×

zbMATH — the first resource for mathematics

Stellar hydrodynamics with Glaister’s Riemann solver: An approach to the stellar collapse. (English) Zbl 0701.76052
In a previous paper [ibid. 74, No.2, 382-408 (1988; Zbl 0632.76079)], P. Glaister presented an approximate Riemann solver for the solution of the Euler equations of gas dynamics in one dimension. We have implemented this Riemann solver into a Lagrangian hydrodynamical code and applied it to the spherically symmetric stellar collapse.
MSC:
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76N15 Gas dynamics, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Constantin, P.; Foias, C., Navier-Stokes equations, (1988), Univ. of Chicago Press Chicago · Zbl 0687.35071
[2] Constantin, P.; Foias, C.; Teman, R., SIAM J. numer. anal., 21, 615, (1984)
[3] Fortin, A.; Fortin, M.; Gervais, J., J. compul. phys., 70, 295, (1987)
[4] Ghia, U.; Ghia, K.N.; Shin, C.T., J. comput. phys., 48, 387, (1982)
[5] Glowinski, R.; Keller, H.; Rinehart, L., SIAM J. sci. stat. comput., 6, 793, (1985)
[6] \scJ. W. Goodrich, in preparation.
[7] Goodrich, J.W.; Sox, W.Y., J. comput. phys., 84, 207, (1989)
[8] Gustafson, K.; Halasi, K., J. comput. phys., 64, 279, (1986)
[9] Gustafson, K.; Halasi, K., J. comput. phys., 70, 271, (1987)
[10] Gustafson, K.; Leben, R., (), 370
[11] Hale, J.K.; Lin, X.-B.; Raugel, G., Math. comput., 50, 89, (1988)
[12] Heywood, J.G.; Rannacker, R., SIAM J. numer. anal., 19, 275, (1982)
[13] Heywood, J.G.; Rannacker, R., SIAM J. numer. anal., 23, 750, (1986)
[14] Heywood, J.G.; Rannacker, R., SIAM J. numer. anal., 25, 489, (1988)
[15] Linden, J., A multigrid method for solving the biharmonic equation on rectangular domains, () · Zbl 0595.65112
[16] Paolucci, S.; Chenoweth, D.R., J. fluid mech., 201, 379, (1989)
[17] Schreiber, R.; Keller, H., J. comput. phys., 49, 310, (1983)
[18] Schreiber, R.; Keller, H., J. comput. phys., 49, 165, (1983)
[19] Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, (1988), Springer-Verlag New York · Zbl 0662.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.