Mills, W. H.; Robbins, David P.; Rumsey, Howard jun. Proof of the Macdonald conjecture. (English) Zbl 0465.05006 Invent. Math. 66, 73-87 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 44 Documents MSC: 05A17 Combinatorial aspects of partitions of integers 05A15 Exact enumeration problems, generating functions Keywords:plane partition; generating function PDF BibTeX XML Cite \textit{W. H. Mills} et al., Invent. Math. 66, 73--87 (1982; Zbl 0465.05006) Full Text: DOI EuDML References: [1] Andrews, G.E.: The Theory of Partitions. Addison-Wesley, 1976 · Zbl 0371.10001 [2] Andrews, G.E.: Plane partitions (III): The weak Macdonald conjecture. Invent. Math.53, 193-225 (1979) · Zbl 0421.10011 · doi:10.1007/BF01389763 [3] Macdonald, I.G.: Symmetric Functions and Hall Polynomials Oxford: Clarendon Press 1979 · Zbl 0487.20007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.