×

zbMATH — the first resource for mathematics

A well-conditioned boundary integral equation for transmission problems of electromagnetism. (English) Zbl 1332.31005
Summary: We propose a new well-conditioned boundary integral equation to solve transmission problems of electromagnetism. This equation is well posed and appears as a compact perturbation of the identity leading to fast iterative solutions without the help of any preconditioner. Some numerical experiments confirm this result.

MSC:
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
65F08 Preconditioners for iterative methods
76M15 Boundary element methods applied to problems in fluid mechanics
78M16 Multipole methods applied to problems in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] F.P. Andriulli, Well-posed boundary element formulations in electromagnetics , Ph.D. dissertation, University of Michigan.
[2] F. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation , IEEE Trans. Ant. Prop. 56 (2008), 2398-2412. · Zbl 1369.78872 · doi:10.1109/TAP.2008.926788
[3] S. Borel, D. Levadoux and F. Alouges, A new well-conditioned integral formulation for Maxwell equations in three-dimensions , IEEE Trans. Ant. Prop. 53 (2005), 2995-3004. · Zbl 1369.78033 · doi:10.1109/TAP.2005.854561
[4] Y. Boubendir, O. Bruno, D. Levadoux and C. Turc, Integral equations requiring small numbers of Krylov-subspace iterations for two-dimensional smooth penetrable scattering problems , Appl. Numer. Math. 95 (2015), 82-98. · Zbl 1320.78016 · doi:10.1016/j.apnum.2015.01.005 · arxiv:1310.1416
[5] —-, Regularized combined field integral equations for acoustic transmission problems , SIAM J. Appl. Math 75 (2015), 929-952. · Zbl 1329.65289 · doi:10.1137/140964230
[6] O.P. Bruno, Computational electromagnetics and acoustics : Highorder solvers, highfrequency configurations, high-order surface representations , Oberwolfach Reports 5 (2007), 284-287.
[7] O. Bruno, T. Elling, R. Paffenroth and C. Turc, Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations , J. Comp. Phys. 228 (2009), 6169-6183. · Zbl 1184.78017 · doi:10.1016/j.jcp.2009.05.020
[8] A. Buffa, R. Hiptmair, T. von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains , Numer. Math. 95 (2003), 459-485. · Zbl 1071.65160 · doi:10.1007/s00211-002-0407-z
[9] S.L. Campbell, I.C.F. Ipsen, C.T. Kelley and C.D. Meyer, GMRES and the minimal polynomial , BIT Numer. Math. 36 , Springer, Netherlands, 1996. · Zbl 0865.65017 · doi:10.1007/BF01733786
[10] S.L. Campbell, I.C.F. Ipsen, C.T. Kelley, C.D. Meyer and Z.Q. Xue, Convergence estimates for solution of integral equations with GMRES, J. Integral Equations Applications 8 (1996), 19-34. · Zbl 0859.65137 · doi:10.1216/jiea/1181075914
[11] B. Carpentieri, I.S. Duff and L. Giraud, Sparse pattern selection strategies for robust frobenius-norm minimization preconditioners in electromagnetism , Numer. Lin. Alg. Appl. 7 (2000), 667-685. · Zbl 1051.65050 · doi:10.1002/1099-1506(200010/12)7:7/8<667::AID-NLA218>3.0.CO;2-X
[12] D. Colton and P. Kress, Integral equation methods in scattering , Wiley & Sons, New York, 1983. · Zbl 0522.35001
[13] —-, Inverse acoustic and electromagnetic scattering theory , Springer-Verlag, New York, 1992. · Zbl 0760.35053
[14] H. Contopanagos, D. Dembart, M. Epton, J. Ottusch, V. Rokhlin, J. Visher and S. Vandzura, Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering , IEEE Trans. Ant. Prop. 50 (2002), 1824-1830.
[15] M. Darbas, Generalized CFIE for the iterative solution of 3-D Maxwell equations , Appl. Math. Lett. 19 (2006), 834-839. · Zbl 1135.78012 · doi:10.1016/j.aml.2005.11.005
[16] B. Jung, T. Sarkar and Y. Chung, A survey of various frequency domain integral equations for the analysis of scattering from three-dimensional dielectric objects , PIER 36 (2002), 193-246.
[17] D. Levadoux, Etude d’une équation intégrale adaptée à la résolution haute fréquence de l’équation de helmholtz , Ph.D. thesis, Paris, 2001.
[18] —-, A new integral formalism for transmission problems of electromagnetism , 8th Inter. Conf. Math. Numer. Aspects Waves, Reading, UK, July 23-27, 2007, 90-92.
[19] —-, Some preconditioners for the CFIE equation of electromagnetism , Math. Meth. Appl. Sci. 31 (2008), 2015-2028. · Zbl 1153.35077 · doi:10.1002/mma.1004
[20] D. Levadoux and B.L. Michielsen, Analysis of a boundary integral equation for high frequency helmholtz problems , in Proc. 4th Inter. Conf. Math. Numer. Aspects Wave Propag., Golden, Colorado, 1998, 765-767. · Zbl 0940.65138
[21] —-, Nouvelles formuations intégrales pour les problèmes de diffraction d’ondes , Math. Model. Numer. Anal. 38 (2004), 157-175. · Zbl 1130.35326 · doi:10.1051/m2an:2004008
[22] D. Levadoux, F. Millot and S. Pernet, New trends in the preconditioning of integral equations of electromagnetism , in Mathematics in industry-scientific computing in electical engineering , J. Roos and Luis R.J. Costa, ed., Springer, New York, 2010. · Zbl 1373.78429
[23] —-, An unpreconditioned boundaryintegral for iterative solution of scattering problems with non-constant Leontovitch impedance boundary conditions , Comm. Comp. Phys. 15 (2014), 1431-1460. · Zbl 1373.78429
[24] J.C. Nédélec, Acoustic and electromagnetic equations : Integral representation for harmonic problems , Springer-Verlag, New York, 2001.
[25] S. Pernet, A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition , Math. Model. Numer. Anal. 44 (2010), 781-801. · Zbl 1205.78025 · doi:10.1051/m2an/2010023 · eudml:44645
[26] E.P. Stephan, Boundary Integral equation for mixed boundary value problems, screen and transmission problems in \(R^3\) , Habilitationsschrift, Tech. Hochschule, Darmstadt, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.