zbMATH — the first resource for mathematics

Fictitious domain method for unsteady problems: application to electromagnetic scattering. (English) Zbl 1126.78311
Summary: In this work, we present and implement a fictitious domain method for time dependent problems of scattering by obstacles. We focus our attention on the case of 2D electromagnetic waves and perfectly conducting boundaries. Such a method allows us to work with uniform meshes for the electric field, independently of the geometry of the obstacle. The boundary condition is taken into account via the introduction of a Lagrange multiplier that can be interpreted as a surface current. After a brief description of the method and a presentation of its main properties, we show the superior accuracy of this new method over the method using a staircase-like approximation of the boundary.

78M25 Numerical methods in optics (MSC2010)
78A45 Diffraction, scattering
Full Text: DOI
[1] Astrakmantev, G.P., Methods of fictitious domains for a second order elliptic equation with natural boundary conditions, U.S.S.R. comput. math. math. phys., 18, 114, (1978)
[2] C. Atamian, R. Glowinski, J. Periaux, H. Steve, G. Terrason, 1989, Control approach to fictitious domain in electro-magnetism, Conference sur l’approximation et les methodes numeriques pour la resolution des equations de Maxwell, Hotel Pullmann, Paris, 1989
[3] Atamian, C.; Joly, P., An analysis of the method of fictitious domains for the exterior Helmholtz problem, RAIRO modèl. math. anal. numér, 27, 251, (1993) · Zbl 0807.65069
[4] A. Bendali, 1984, Approximation par elements finis de surface de problemes de diffraction des ondes electro-magnetiques, Université Paris VI
[5] Brezzi, F., On the existence uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO anal. numér, R-2, (1974) · Zbl 0338.90047
[6] G. Cohen, P. Joly, N. Tordjman, 1995, Higher order triangular finite elements with mass lumping for the wave equation, Third International Conference on Mathematical and Numerical Aspects of Wave Propagation, 1, 1995, 270 · Zbl 0870.65085
[7] F. Collino, S. Garcés, P. Joly, F. Millot, 1995, Fictitious domain method for unsteady problems: Application to electromagnetic scattering, International Conference on Electromagnetics in Advanced Applications, 1995 · Zbl 0870.65123
[8] Dautray, R.; Lions, J.L., Analyse mathématique et calcul numérique pour LES sciences et LES techniques, (1988), Masson Paris
[9] Dupont, T., ℓ^2, SIAM J. numer. anal., 10, (1973)
[10] Engquist, B.; Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. comput., 31, (1977) · Zbl 0367.65051
[11] Finogenov, S.A.; Kuznetsov, Y.A., Two stage fictitious components methods for solving the Dirichlet boundary value problem, Sov. J. num. anal. math. modelling, 3, 301, (1988) · Zbl 0825.65080
[12] S. Garcés, Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles Étude mathématique et numérique d’un modèle, Eacute;cole National Supérieure de l’Aeronautique et de l’Espace, Toulouse
[13] Girault, V.; Glowinski, R., Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan J. indus. appl. math., 12, 487, (1995) · Zbl 0843.65076
[14] Glowinski, R.; Pan, T.W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. methods appl. mech. eng., 111, 283, (1994) · Zbl 0845.73078
[15] Glowinski, R.; Pan, T.W.; Periaux, J., A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comp. meth. appl. mech. eng., 112, 133, (1994) · Zbl 0845.76069
[16] Hsiao, G.C.; Kleinmann, R.E., Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics, IEEE trans. antennas propagat., 45, 316, (1997) · Zbl 0945.78012
[17] Marchuk, G.I.; Kuznetsov, Y.A.; Matsokin, A.M., Fictitious domain and domain decomposition methods, Sov. J. num. anal. math. modelling, 1, 3, (1986) · Zbl 0825.65027
[18] Monk, P., A mixed method for approximating Maxwell’s equations, SIAM J. on num. anal. math. modelling, 28, 1610, (1991) · Zbl 0742.65091
[19] Nedelec, J.C., Mixed finite elements inR3, Num. math., 142, 79, (1984)
[20] Raviart, P.A.; Thomas, J.M., Introduction à l’analyse numérique des équations aux dérivées partielles, (1983), Masson Paris · Zbl 0561.65069
[21] Taflove, A., Computational electrodynamics, the finite-difference time domain method, (1995), Artech House London · Zbl 0840.65126
[22] Yee, K.S., Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE trans. on antennas and propagation, 14, 302, (1966) · Zbl 1155.78304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.