×

zbMATH — the first resource for mathematics

Local model networks based mixed-sensitivity \(H_\infty\) control of CE-150 helicopters. (English) Zbl 1389.93100
Summary: In this paper, a local model network \(H_\infty\) control is proposed for CE-150 helicopter stabilization. The proposed strategy capitalizes on recent developments on \(H_\infty\) control and its promising results in robust stabilization of plants under unstructured uncertainties. CE-150 helicopters are known for their varying operating conditions along with external disturbances. Therefore, local model networks are introduced for their adaptive feature and since they provide a powerful combination of fuzzy logic and conventional linear control techniques to control nonlinear systems without the added computational burden of soft-computing techniques. Using the fact that the system can be linearized at different operating points, a mixed sensitivity \(H_\infty\) controller is designed for the linearized system, and combined within a network to make transitions between them. The proposed control structure ensures robustness, decoupling of the system dynamics while achieving good performance. A comparison is carried-out against the well-known Proportional-Integral-Derivative (PID) control technique. Results are presented to illustrate the controller’s performance in various operating conditions.
MSC:
93B36 \(H^\infty\)-control
93D21 Adaptive or robust stabilization
93C41 Control/observation systems with incomplete information
93B18 Linearizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Liu, G. Lu, Y. Zhong. Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4627–4636. · doi:10.1109/TIE.2012.2216233
[2] A. L. Fradkov, B. Andrievsky, D. Peaucelle. Estimation and control under information constraints for LAAS helicopter benchmark. IEEE Transactions on Control Systems Technology, 2010, 18(5): 1180–1187. · doi:10.1109/TCST.2009.2033386
[3] R. Lozano, P. Castillo, P. Garcia, et al. Robust prediction-based control for unstable delay systems: application to the yaw control of a mini-helicopter. Automatica, 2004, 40(4): 603–612. · Zbl 1070.93042 · doi:10.1016/j.automatica.2003.10.007
[4] J. C. Avila Vilchis, B. Brogliato, A. Dzul, et al. Nonlinear modelling and control of helicopters. Automatica, 2003, 39(9): 1583–1596. · Zbl 1029.93046 · doi:10.1016/S0005-1098(03)00168-7
[5] D. Mclean, H. Matsuda. Helicopter station-keeping: comparing LQR, fuzzy-logic and neural-net controllers. Engineering Applied Artificial Intelligence, 1998, 11(3): 411–418. · doi:10.1016/S0952-1976(98)00005-0
[6] S. K. Kannan, E. N. Johnson. Adaptive flight control for an autonomous unmanned helicopter. AIAA Guidance, Navigation, and Control Conference, Monterey: AIAA, 2002: DOI 10.2514/6.2002-4439.
[7] H. C. Christmann, H. B. Christophersen, A. D. Wu, et al. Guidance, Navigation, Control, and Operator Interfaces for Small Rapid Response Unmanned Helicopters. Atlanta, U.S.A.: Georgia Institute of Technology, 2008.
[8] S. K. Kannan, E. N. Johnson. Adaptive trajectory control for autonomous helicopters. Journal of Guidance Control Dynamics, 2005, 28(3): 524–538. · doi:10.2514/1.12821
[9] J. V. R. Prasad, M. Mittal. Three-dimensional modeling and control of a twin-lift helicopter system. Journal of Guidance Control Dynamics, 1993, 16(1): 86–95. · doi:10.2514/3.11431
[10] A. Serrni, A. Isidor, L. Marconi. Robust nonlinear motion control of a helicopter. IEEE Transactions on Automatic Control, 2003, 48(3): 413–426. · Zbl 1364.93535 · doi:10.1109/TAC.2003.809147
[11] A. Bogdanov, E. Wan. State-dependent Riccati equation control for small autonomous helicopters. Journal of Guidance, Control, and Dynamics, 2007, 30(1): 47–60. · doi:10.2514/1.21910
[12] H. Sira-Ramirez, M. Zribi, S. Ahmad. Dynamical sliding mode control approach for vertical flight regulation in helicopters. IEE Proceedings–Control Theory and Applications, 1994, 141(1): 19–24. · Zbl 0800.93614 · doi:10.1049/ip-cta:19949624
[13] E. N. Johnson, S. K. Kannan. Adaptive trajectory based control for autonomous helicopters. The 21st Digital Avionics Systems Conference, 2002: DOI 10.1109/DASC.2002.1052945.
[14] J. Shan, H.-T. Liu, S. Nowotny. Synchronised trajectorytracking control of multiple 3-DOF experimental helicopters. IEE Proceedings–Control Theory and Applications, 2005, 152(6): 683–692. · doi:10.1049/ip-cta:20050008
[15] A. Benallegue, T. Madani. Backstepping control for a quadrotor helicopter. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing: IEEE, 2006: 3255–3260.
[16] D. Driankov, B. Kadmiry. A fuzzy gain-scheduler for the attitude control of an unmanned helicopter. IEEE Transactions on Fuzzy System, 2004, 12(4): 502–515. · Zbl 05452532 · doi:10.1109/TFUZZ.2004.832539
[17] D. Driankov, B. Kadmiry. A fuzzy flight controller combining linguistic and model-based fuzzy control. Fuzzy Sets Systems, 2004, 146(3): 313–347. · Zbl 1055.93526 · doi:10.1016/j.fss.2003.07.002
[18] K. P. Tee, S. S. Ge, B. Ren. Adaptive neural network control of helicopters with unknown dynamics. Proceedings of the 45th IEEE Conference on Decision and Control, San Diego: IEEE, 2006: 3022–3027.
[19] R. Enns, J. Si. Helicopter trimming and tracking control using direct neural dynamic programming. IEEE Transactions on Neural Network, 2003, 14(4): 929–939. · doi:10.1109/TNN.2003.813839
[20] H. Chaoui, W. Gueaieb. Type-2 fuzzy logic control of a flexiblejoint manipulator. Journal of Intelligent and Robotic Systems, 2008, 51(2): 159–186. · Zbl 05537120 · doi:10.1007/s10846-007-9185-2
[21] H. Chaoui, W. Gueaieb, M. Biglarbegian, et al. Computationally efficient adaptive type-2 fuzzy control of flexible-joint manipulators. Robotics, 2013, 2(2): 66–91. · doi:10.3390/robotics2020066
[22] K. S. Narendra, J. Balakrishnan, M. K. Ciliz. Adaptation and learning using multiple models, switching, and tuning. IEEE Control Systems, 1995, 15(3): 37–51. · doi:10.1109/37.387616
[23] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 1981, 26(2): 301–320. · Zbl 0474.93025 · doi:10.1109/TAC.1981.1102603
[24] B. A. Francis (Ed.). A Course in H8 Control Theory. Lecture Notes in Control and Information Sciences. Berlin: Springer, 1987.
[25] J. C. Doyle, K. Glover, P. P. Khargonekar, et al. State-space solutions to standard H2 and H8 control problems. IEEE Transactions on Automatic Control, 1989, 34(8): 831–847. · Zbl 0698.93031 · doi:10.1109/9.29425
[26] H. Kwakernaak. A polynomial approach to minimax frequency domain optimization of multivariable feedback systems. International Journal of Control, 1986, 44(1): 117–156. · Zbl 0678.93003 · doi:10.1080/00207178608933586
[27] M. J. Grimble. OptimalH8 robustness and the relationship to lqg design problems. International Journal of Control, 1986, 43(2): 351–372. · Zbl 0662.93019 · doi:10.1080/00207178608933471
[28] H. Kwakennaak. The polynomial approach to H8 optimal regulation. H8 Control Theory, Berlin: Springer, 1990: 141–221.
[29] M. J. Grimble. Polynomial Matrix Solution of the Standard Statefeedback H8 Control Problem and Relationship to the Riccati Equation State Space Solution. Research Report No. ICU/302. Scotland: University of Strathclyde, 1990.
[30] A. Badnjevi, E. uni, T. Uzunovi, et al. Design and implementation of three-dimensional simulator for control of laboratory model helicopter. The 33rd International Convention on Information and Communication Technology, Electronics and Microelectronics, Opatija, Croatia: IEEE, 2010: 1362–1367.
[31] P. Horaek. CE 150 helicopter model. Educational Models: http://www.humusoft.com/models/ce150/.
[32] A. Miranian, K. Rouzbehi. Nonlinear power system load identification using local model networks. IEEE Transactions on Power Systems, 2013, 28(3): 2872–2881. · doi:10.1109/TPWRS.2012.2234142
[33] O. Konig, C. Hametner, G. Prochart, et al. Battery emulation for power-hil using local model networks and robust impedance control. IEEE Transactions on Industrial Electronics, 2014, 61(2): 943–955. · doi:10.1109/TIE.2013.2253070
[34] S. Ozana, P. Vojciak, M. Pies, et al. Control design of mixed sensitivity problem for educational model of helicopter. Control Engineering, 2014, 12(5): 488–500.
[35] P. Lundstrom, S. Skogestad, Z. Wang. Uncertainty weight selection for H-infinity and mu-control methods. Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, U.K.: IEEE, 1991: 1537–1542.
[36] A. Bansal, V. Sharma. Design and analysis of robust H-infinity controller. Control Theory and Informatics, 2013, 3(2): 7–14.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.