×

Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy. (English) Zbl 1374.76237

Summary: We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.{
©2015 American Institute of Physics}

MSC:

76U05 General theory of rotating fluids
86A10 Meteorology and atmospheric physics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beron-Vera, F. J.; Wang, Y.; Olascoaga, M. J.; Goni, J. G.; Haller, G., Objective detection of oceanic eddies and the Agulhas leakage, J. Phys. Oceanogr., 43, 1426-1438 (2013) · doi:10.1175/JPO-D-12-0171.1
[2] Budisic, M.; Mezic, I., Geometry of the ergodic quotient reveals coherent structures in flows, Physica D, 241, 1255-1269 (2012) · Zbl 1254.37010 · doi:10.1016/j.physd.2012.04.006
[3] Cartwright, J. H. E.; Feingold, M.; Piro, O., Global diffusion in a realistic three-dimensional time-dependent nonturbulent fluid flow, Phys. Rev. Lett., 75, 3669-3672 (1995) · doi:10.1103/PhysRevLett.75.3669
[4] Cartwright, J. H. E.; Feingold, M.; Piro, O., Chaotic advection in three dimensional unsteady incompressible laminar flow, J. Fluid Mech., 316, 259-284 (1996) · Zbl 0877.76023 · doi:10.1017/S0022112096000535
[5] Cheng, C.-Q.; Sun, Y.-S., Existence of invariant tori in three-dimensional measure-preserving mappings, Celestial Mech., 47, 275-292 (1990) · Zbl 0705.70013 · doi:10.1007/BF00053456
[6] Chirikov, B. V., A universal instability of many-dimensional oscillator systems, Phys. Rep., 52, 263-379 (1979) · doi:10.1016/0370-1573(79)90023-1
[7] Dullin, H. R.; Meiss, J. D., Resonances and twist in volume-preserving mappings, Siam J. Appl. Dyn. Syst., 11, 319-349 (2012) · Zbl 1235.37017 · doi:10.1137/110846865
[8] Fischer, P. F., An overlapping schwarz method for spectral element solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 133, 84-101 (1997) · Zbl 0904.76057 · doi:10.1006/jcph.1997.5651
[9] Fountain, G. O.; Khakhar, K. V.; Mezic, I.; Ottino, J. M., Chaotic mixing in a bounded three-dimensional flow, J. Fluid Mech., 417, 265-301 (2000) · Zbl 0991.76083 · doi:10.1017/S002211200000118X
[10] Fox, A. M.; Meiss, J. D., Greene”s residue criterion for the breakup of invariant tori of volume-preserving maps, Physica D, 243, 1, 45-63 (2013) · Zbl 1259.37036 · doi:10.1016/j.physd.2012.09.005
[11] Froyland, G.; Padberg, K.; England, M. H.; Treguier, A. M., Detection of coherent oceanic structures via transfer operators, Phys. Rev. Lett., 98, 224503 (2007) · doi:10.1103/PhysRevLett.98.224503
[12] Greenspan, H. P., The Theory of Rotating Fluids (1968) · Zbl 0182.28103
[13] Lackey, T. C.; Sotiropoulos, F., Relationship between stirring rate and Reynolds number in the chaotically advected steady flow in a container with exactly counter-rotating lids, Phys. Fluids, 18, 5, 053601 (2006) · doi:10.1063/1.2201967
[14] Ledwell, J. R.; McGillicuddy, D. J.; Anderson, L. A., Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy, Deep Sea Res., Part II, 55, 1139-1160 (2008) · doi:10.1016/j.dsr2.2008.02.005
[15] Lomeli, H. E.; Ramirez-Ros, R., Separatrix splitting in 3d volume-preserving maps, SIAM J. Appl. Dyn. Syst., 7, 4, 1527-1557 (2008) · Zbl 1172.34031 · doi:10.1137/080713173
[16] Lopez, J. M.; Marques, F., Sidewall boundary layer instabilities in a rapidly rotating cylinder driven by a differentially co-rotating lid, Phys. Fluids, 22, 114109 (2010) · Zbl 1308.76300 · doi:10.1063/1.3517292
[17] Maday, Y.; Patera, A. T., Spectral element methods for the Navier-Stokes equations, State of the Art Surveys in Computational Mechanics, 71-143 (1989)
[18] Maslowe, S. A.; Clarke, S. R., Subcritical Rossby waves in zonal shear flows with nonlinear critical layers, Stud. Appl. Math., 108, 89-103 (2002) · Zbl 1152.76348 · doi:10.1111/1467-9590.01425
[19] McGillicuddy, D. J., Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316, 5827, 1021-1026 (2007) · doi:10.1126/science.1136256
[20] Meiss, J. D., The destruction of tori in volume-preserving maps, Commun. Nonlinear Sci. Numer. Simul., 17, 2108-2121 (2012) · Zbl 1242.37037 · doi:10.1016/j.cnsns.2011.04.014
[21] Mendoza, C.; Mancho, A. M.; Wiggins, S., Lagrangian descriptors and the assessment of the predictive capacity of oceanic data sets, Nonlinear Process. Geophys., 21, 677-689 (2014) · doi:10.5194/npg-21-677-2014
[22] Mezic, I.; Sotiropoulos, F., Ergodic theory and experimental visualization of invariant sets in chaotically advected flows, Phys. Fluids, 14, 7, 2235-2243 (2002) · Zbl 1185.76257 · doi:10.1063/1.1480266
[23] Mezic, I.; Wiggins, S., On the integrability of perturbations of three-dimensional fluid flows with symmetry, J. Nonlinear Sci., 4, 157-194 (1994) · Zbl 0796.76021 · doi:10.1007/BF02430631
[24] Mireles-James, J. D.; Lomeli, H. E., Computation of heteroclinic arcs with application to the volume preserving Henon family, SIAM J. Appl. Dyn. Syst., 9, 3, 919-953 (2010) · Zbl 1207.37014 · doi:10.1137/090776329
[25] Moharana, N. R.; Speetjens, M. F. M.; Trieling, R. R.; Clercx, H. J. H., Three-dimensional Lagrangian transport phenomena in unsteady laminar flows driven by a rotating sphere, Phys. Fluids, 25, 093602 (2013) · doi:10.1063/1.4819901
[26] Osinga, H. M.; Krauskopf, B., Crocheting the Lorenz manifold, Math. Intell., 26, 4, 25-37 (2004) · Zbl 1073.37036 · doi:10.1007/BF02985416
[27] Patera, A., A spectral element method for fluid dynamics; laminar flow in a channel expansion, J. Comput. Phys., 54, 468-488 (1984) · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[28] Pouransari, Z.; Speetjens, M. F. M.; Clercx, H. J. H., Formation of coherent structures by fluid inertia in three-dimensional laminar flows, J. Fluid Mech., 654, 5-34 (2010) · Zbl 1193.76137 · doi:10.1017/S0022112010001552
[29] Pratt, L. J.; Rypina, I. I.; Özgökmen, T. M.; Wang, P.; Childs, H.; Bebieva, Y., Chaotic advection in a steady, three-dimensional, ekman-driven eddy, J. Fluid Mech., 738, 143-183 (2014) · doi:10.1017/jfm.2013.583
[30] Rom-Kedar, V.; Kadanoff, L. P.; Ching, E. S. C.; Amick, C., The break-up of a heteroclinic connection in a volume preserving mapping, Physica D, 62, 51-65 (1993) · Zbl 0783.58067 · doi:10.1016/0167-2789(93)90271-2
[31] Rypina, I. I.; Brown, M. G.; Beron-Vera, F. J.; Kocak, H.; Olascoaga, M. J.; Udovydchenkov, I. A., On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the Stratospheric Polar Vortex, J. Atmos. Sci., 64, 3595-3610 (2007) · doi:10.1175/JAS4036.1
[32] Rypina, I. I.; Brown, M. G.; Beron-Vera, F. J.; Kocak, H.; Olascoaga, M. J.; Udovydchenkov, I. A., Robust transport barriers resulting from strong Kolmogorov-Arnold-Moser stability, Phys. Rev. Lett., 98, 104102 (2007) · doi:10.1103/PhysRevLett.98.104102
[33] Rypina, I. I.; Pratt, L. J.; Pullen, J.; Levin, J.; Gordon, A., Chaotic advection in an archipelago, J. Phys. Oceanogr., 40, 9, 1988-2006 (2010) · doi:10.1175/2010JPO4336.1
[34] Rypina, I. I.; Scott, S. E.; Pratt, L. J.; Brown, M. G., Investigating the connection between complexity of isolated trajectories and lagrangian coherent structures, Nonlinear Proc. Geophys., 18, 977-987 (2011) · doi:10.5194/npg-18-977-2011
[35] Samelson, R. M.; Wiggins, S., Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach (2006) · Zbl 1132.37001
[36] Solomon, T. H.; Mezic, I., Uniform resonant chaotic mixing in fluid flows, Nature, 425, 376-380 (2003) · doi:10.1038/nature01993
[37] Speetjens, M. F. M.; Clercx, H. J. H., A spectral solver for the Navier-Stokes equations in the velocity-vorticity formulation, Int. J. Comput. Fluid Dyn., 19, 3, 191-209 (2005) · Zbl 1184.76774 · doi:10.1080/10618560412331283808
[38] Vainchtein, D. L.; Widloski, J.; Grigoriev, R. O., Resonance phenomena and chaotic advection in a cellular flow, Phys. Rev. Lett., 99, 094501 (2007) · doi:10.1103/PhysRevLett.99.094501
[39] Vainchtein, D. L.; Widloski, J.; Grigoriev, R. O., Resonant chaotic mixing in a cellular flow, Phys. Rev. E, 78, 026302 (2008) · doi:10.1103/PhysRevE.78.026302
[40] Xia, Z., Existence of invariant tori in volume-preserving diffeomorphisms, Ergodic Theor. Dyn. Syst., 12, 621-631 (1992) · Zbl 0768.58042 · doi:10.1017/S0143385700006969
[41] Zaslavsky, G., Chaos in Dynamic Systems (1985)
[42] Zaslavsky, G. M.; Chirikov, B. V., Stochastic instability of non-linear oscillations, Sov. Phys. Usp., 14, 549-672 (1972) · Zbl 1156.34335 · doi:10.1070/PU1972v014n05ABEH004669
[43] Znaien, J.; Speetjens, M. F. M.; Trieling, R. R.; Clercx, H. J. H., Observability of periodic lines in three-dimensional lid-driven cylindrical cavity flows, Phys. Rev. E, 85, 066320 (2012) · doi:10.1103/PhysRevE.85.066320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.