×

Axisymmetric Stokes flow due to a point-force singularity acting between two coaxially positioned rigid no-slip disks. (English) Zbl 1460.76165

Summary: We investigate theoretically, on the basis of the steady Stokes equations for a viscous incompressible fluid, the flow induced by a stokeslet located on the centre axis of two coaxially positioned rigid disks. The stokeslet is directed along the centre axis. No-slip boundary conditions are assumed to hold at the surfaces of the disks. We perform the calculation of the associated Green’s function in large parts analytically, reducing the spatial evaluation of the flow field to one-dimensional integrations amenable to numerical treatment. To this end, we formulate the solution of the hydrodynamic problem for the viscous flow surrounding the two disks as a mixed boundary-value problem, which we then reduce to a system of four dual integral equations. We show the existence of viscous toroidal eddies arising in the fluid domain bounded by the two disks, manifested in the plane containing the centre axis through adjacent counter-rotating eddies. Additionally, we probe the effect of the confining disks on the slow dynamics of a point-like particle by evaluating the hydrodynamic mobility function associated with axial motion. Thereupon, we assess the appropriateness of the commonly employed superposition approximation and discuss its validity and applicability as a function of the geometrical properties of the system. Additionally, we complement our semi-analytical approach by finite-element computer simulations, which reveals a good agreement. Our results may find applications in guiding the design of microparticle-based sensing devices and electrokinetic transport in small-scale capacitors.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows

Software:

Mathematica
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abramowitz, M. & Stegun, I. A.1972Handbook of Mathematical Functions. Dover. · Zbl 0065.43202
[2] Asta, A. J., Palaia, I., Trizac, E., Levesque, M. & Rotenberg, B.2019Lattice Boltzmann electrokinetics simulation of nanocapacitors. J. Chem. Phys.151 (11), 114104.
[3] Babel, S., Eikerling, M. & Löwen, H.2018Impedance resonance in narrow confinement. J. Phys. Chem. C122 (38), 21724-21734.
[4] Balducci, A., Mao, P., Han, J. & Doyle, P. S.2006Double-stranded DNA diffusion in slitlike nanochannels. Macromolecules39 (18), 6273-6281.
[5] Baron, M., Bławzdziewicz, J. & Wajnryb, E.2008Hydrodynamic crystals: collective dynamics of regular arrays of spherical particles in a parallel-wall channel. Phys. Rev. Lett.100 (17), 174502.
[6] Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G.2016Active particles in complex and crowded environments. Rev. Mod. Phys.88 (4), 045006.
[7] Becker, R. & Braack, M.2001A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo38 (4), 173-199. · Zbl 1008.76036
[8] Benesch, T., Yiacoumi, S. & Tsouris, C.2003Brownian motion in confinement. Phys. Rev. E68 (2), 021401.
[9] Bhattacharya, S.2008Cooperative motion of spheres arranged in periodic grids between two parallel walls. J. Chem. Phys.128 (7), 074709.
[10] Bhattacharya, S. & Bławzdziewicz, J.2002Image system for Stokes-flow singularity between two parallel planar walls. J. Math. Phys.43 (11), 5720-5731. · Zbl 1060.76028
[11] Bhattacharya, S., Bławzdziewicz, J. & Wajnryb, E.2005Hydrodynamic interactions of spherical particles in suspensions confined between two planar walls. J. Fluid Mech.541, 263-292. · Zbl 1082.76102
[12] Bhattacharya, S., Bławzdziewicz, J. & Wajnryb, E.2006Hydrodynamic interactions of spherical particles in Poiseuille flow between two parallel walls. Phys. Fluids18 (5), 053301. · Zbl 1185.76496
[13] Bilbao, A., Wajnryb, E., Vanapalli, S. A. & Bławzdziewicz, J.2013Nematode locomotion in unconfined and confined fluids. Phys. Fluids25 (8), 081902.
[14] Blake, J. R.1971A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. Phil. Soc.70 (02), 303-310. · Zbl 0244.76016
[15] Bławzdziewicz, J. & Wajnryb, E.2008An analysis of the far-field response to external forcing of a suspension in the Stokes flow in a parallel-wall channel. Phys. Fluids20 (9), 093303. · Zbl 1182.76069
[16] Braack, M. & Richter, T.2006Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Comput. Fluids35 (4), 372-392. · Zbl 1160.76364
[17] Bracewell, R.1999The Fourier Transform and Its Applications. McGraw-Hill. · Zbl 0149.08301
[18] Brenner, M. P.1999Screening mechanisms in sedimentation. Phys. Fluids11 (4), 754-772. · Zbl 1147.76337
[19] Brotto, T., Caussin, J.-B., Lauga, E. & Bartolo, D.2013Hydrodynamics of confined active fluids. Phys. Rev. Lett.110 (3), 038101.
[20] Campbell, L. C., Wilkinson, M. J., Manz, A., Camilleri, P. & Humphreys, C. J.2004Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries. Lab Chip4 (3), 225-229.
[21] Copson, E. T.1961On certain dual integral equations. Glasgow Math. J.5 (1), 21-24. · Zbl 0158.12901
[22] Cross, J. D., Strychalski, E. A. & Craighead, H. G.2007Size-dependent DNA mobility in nanochannels. J. Appl. Phys.102 (2), 024701.
[23] Daddi-Moussa-Ider, A. & Gekle, S.2016Hydrodynamic interaction between particles near elastic interfaces. J. Chem. Phys.145 (1), 014905. · Zbl 1383.76559
[24] Daddi-Moussa-Ider, A. & Gekle, S.2017Hydrodynamic mobility of a solid particle near a spherical elastic membrane: axisymmetric motion. Phys. Rev. E95, 013108. · Zbl 1383.76559
[25] Daddi-Moussa-Ider, A. & Gekle, S.2018Brownian motion near an elastic cell membrane: a theoretical study. Eur. Phys. J. E41 (2), 19. · Zbl 1470.76104
[26] Daddi-Moussa-Ider, A., Guckenberger, A. & Gekle, S.2016Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation. Phys. Fluids28 (7), 071903.
[27] Daddi-Moussa-Ider, A., Kaoui, B. & Löwen, H.2019Axisymmetric flow due to a Stokeslet near a finite-sized elastic membrane. J. Phys. Soc. Japan88 (5), 054401.
[28] Daddi-Moussa-Ider, A., Lisicki, M., Löwen, H. & Menzel, A. M.2020Dynamics of a microswimmer-microplatelet composite. Phys. Fluids32 (2), 021902.
[29] Daddi-Moussa-Ider, A., Lisicki, M., Mathijssen, A. J. T. M., Hoell, C., Goh, S., Bławzdziewicz, J., Menzel, A. M. & Löwen, H.2018State diagram of a three-sphere microswimmer in a channel. J. Phys.: Condens. Matter30 (25), 254004.
[30] Dai, L., Tree, D. R., Van Der Maarel, J. R. C., Dorfman, K. D. & Doyle, P. S.2013Revisiting blob theory for DNA diffusivity in slitlike confinement. Phys. Rev. Lett.110, 168105.
[31] Daiguji, H., Yang, P., Szeri, A. J. & Majumdar, A.2004Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett.4 (12), 2315-2321.
[32] Dalal, S., Farutin, A. & Misbah, C.2020Amoeboid swimming in compliant channel. Soft Matt.16, 1599-1613.
[33] Darwiche, A., Ingremeau, F., Amarouchene, Y., Maali, A., Dufour, I. & Kellay, H.2013Rheology of polymer solutions using colloidal-probe atomic force microscopy. Phys. Rev. E87 (6), 062601.
[34] Davis, P. J. & Rabinowitz, P.2007Methods of Numerical Integration. Courier Corporation. · Zbl 1139.65016
[35] Doyle, P. S., Bibette, J., Bancaud, A. & Viovy, J.-L.2002Self-assembled magnetic matrices for DNA separation chips. Science295 (5563), 2237-2237.
[36] Driscoll, M. & Delmotte, B.2019Leveraging collective effects in externally driven colloidal suspensions: experiments and simulations. Curr. Opin. Colloid Interface Sci.40, 42-57.
[37] Dufour, I., Maali, A., Amarouchene, Y., Ayela, C., Caillard, B., Darwiche, A., Guirardel, M., Kellay, H., Lemaire, E., Mathieu, F., et al.2012The microcantilever: a versatile tool for measuring the rheological properties of complex fluids. J. Sens.2012, 719898.
[38] Dufresne, E. R., Altman, D. & Grier, D. G.2001Brownian dynamics of a sphere between parallel walls. Europhys. Lett.53 (2), 264.
[39] Faucheux, L. P. & Libchaber, A. J.1994Confined Brownian motion. Phys. Rev. E49, 5158-5163.
[40] Faxén, H.1921 Einwirkung der Gefässwände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit. PhD thesis, Uppsala University, Uppsala, Sweden. · JFM 48.0946.02
[41] Felderhof, B. U.2006Diffusion and velocity relaxation of a Brownian particle immersed in a viscous compressible fluid confined between two parallel plane walls. J. Chem. Phys.124 (5), 054111.
[42] Felderhof, B. U.2010aEchoing in a viscous compressible fluid confined between two parallel plane walls. J. Fluid Mech.656, 223-230. · Zbl 1197.76113
[43] Felderhof, B. U.2010bLoss of momentum in a viscous compressible fluid due to no-slip boundary condition at one or two planar walls. J. Chem. Phys.133 (7), 074707.
[44] François, N., Amarouchene, Y., Lounis, B. & Kellay, H.2009Polymer conformations and hysteretic stresses in nonstationary flows of polymer solutions. Europhys. Lett.86 (3), 34002.
[45] François, N., Lasne, D., Amarouchene, Y., Lounis, B. & Kellay, H.2008Drag enhancement with polymers. Phys. Rev. Lett.100 (1), 018302.
[46] Ganatos, P., Pfeffer, R. & Weinbaum, S.1980aA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech.99, 755-783. · Zbl 0447.76019
[47] Ganatos, P., Weinbaum, S. & Pfeffer, R.1980bA strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech.99, 739-753. · Zbl 0447.76018
[48] Gompper, G., Winkler, R. G., Speck, T., Solon, A., Nardini, C., Peruani, F., Löwen, H., Golestanian, R., Kaupp, U. B., Alvarez, L., et al.2020The 2020 motile active matter roadmap. J. Phys.: Condens. Matter32 (19), 193001.
[49] Graham, M. D.2011Fluid dynamics of dissolved polymer molecules in confined geometries. Annu. Rev. Fluid Mech.43, 273-298. · Zbl 1299.76184
[50] Griggs, A. J., Zinchenko, A. Z. & Davis, R. H.2007Low-Reynolds-number motion of a deformable drop between two parallel plane walls. Intl J. Multiphase Flow33 (2), 182-206.
[51] Hackborn, W. W.1990Asymmetric Stokes flow between parallel planes due to a rotlet. J. Fluid Mech.218, 531-546. · Zbl 0706.76032
[52] Happel, J. & Brenner, H.1983Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Springer, Martinus Nijhoff Publishers, The Hague. · Zbl 0612.76032
[53] Imai, I.1973Fluid Dynamics (Ryūtai Rikigaku). Syokabo Publishing. [in Japanese].
[54] Janssen, P. J. A. & Anderson, P. D.2007Boundary-integral method for drop deformation between parallel plates. Phys. Fluids19 (4), 043602. · Zbl 1146.76425
[55] Janssen, P. J. A. & Anderson, P. D.2008A boundary-integral model for drop deformation between two parallel plates with non-unit viscosity ratio drops. J. Comp. Phys.227 (20), 8807-8819. · Zbl 1391.76453
[56] Jones, R. B.2004Spherical particle in Poiseuille flow between planar walls. J. Chem. Phys.121 (1), 483-500.
[57] Jones, J. J., Van Der Maarel, J. R. C. & Doyle, P. S.2013Intrachain dynamics of large dsDNA confined to slitlike channels. Phys. Rev. Lett.110 (6), 068101.
[58] Kim, M. U.1983Axisymmetric Stokes flow due to a point force near a circular disk. J. Phys. Soc. Japan52 (2), 449-455.
[59] Kim, S. & Karrila, S. J.2013Microhydrodynamics: Principles and Selected Applications. Courier Corporation.
[60] Kushch, V. I.2013Micromechanics of Composites: Multipole Expansion Approach. Butterworth-Heinemann.
[61] Kushch, V. I. & Sangani, A. S.2000Conductivity of a composite containing uniformly oriented penny-shaped cracks or perfectly conducting discs. Proc. R. Soc. Lond. A456 (1995), 683-699. · Zbl 0957.74039
[62] Lasne, D., Maali, A., Amarouchene, Y., Cognet, L., Lounis, B. & Kellay, H.2008Velocity profiles of water flowing past solid glass surfaces using fluorescent nanoparticles and molecules as velocity probes. Phys. Rev. Lett.100 (21), 214502.
[63] Lauga, E.2016Bacterial hydrodynamics. Annu. Rev. Fluid Mech.48, 105-130. · Zbl 1356.76475
[64] Lauga, E., Brenner, M. & Stone, H.2007Microfluidics: the no-slip boundary condition. In Springer Handbook of Experimental Fluid Mechanics (ed. Tropea, C., Yarin, A. & Foss, J. F.), pp. 1219-1240. Springer.
[65] Lauga, E. & Powers, T. R.2009The hydrodynamics of swimming microorganisms. Rep. Prog. Phys.72 (9), 096601.
[66] Lauga, E. & Squires, T. M.2005Brownian motion near a partial-slip boundary: a local probe of the no-slip condition. Phys. Fluids17 (10), 103102. · Zbl 1188.76076
[67] Le Goff, A., Kaoui, B., Kurzawa, G., Haszon, B. & Salsac, A.-V.2017Squeezing bio-capsules into a constriction: deformation till break-up. Soft Matt.13 (41), 7644-7648.
[68] Leal, L. G.1980Particle motions in a viscous fluid. Annu. Rev. Fluid Mech.12 (1), 435-476. · Zbl 0474.76104
[69] Lee, S. H., Chadwick, R. S. & Leal, L. G.1979Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz. J. Fluid Mech.93, 705-726. · Zbl 0434.76024
[70] Lee, S. H. & Leal, L. G.1980Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates. J. Fluid Mech.98, 193-224. · Zbl 0448.76026
[71] Lin, B., Yu, J. & Rice, S. A.2000Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Phys. Rev. E62, 3909-3919.
[72] Liron, N.1978Fluid transport by cilia between parallel plates. J. Fluid Mech.86 (4), 705-726. · Zbl 0374.76102
[73] Liron, N. & Blake, J. R.1981Existence of viscous eddies near boundaries. J. Fluid Mech.107, 109-129. · Zbl 0468.76130
[74] Liron, N. & Mochon, S.1976Stokes flow for a Stokeslet between two parallel flat plates. J. Engng Maths10 (4), 287-303. · Zbl 0377.76030
[75] Lobry, L. & Ostrowsky, N.1996Diffusion of Brownian particles trapped between two walls: theory and dynamic-light-scattering measurements. Phys. Rev. B53, 12050-12056.
[76] Lorentz, H. A.1907Ein allgemeiner Satz, die Bewegung einer reibenden Flüssigkeit betreffend, nebst einigen Anwendungen desselben. Abh. Theor. Phys.1, 23.
[77] Marini Bettolo Marconi, U. & Melchionna, S.2012Charge transport in nanochannels: a molecular theory. Langmuir28 (38), 13727-13740.
[78] Mathijssen, A. J. T. M., Doostmohammadi, A., Yeomans, J. M. & Shendruk, T. N.2016Hydrodynamics of microswimmers in films. J. Fluid Mech.806, 35-70. · Zbl 1383.76584
[79] Menzel, A. M.2013Unidirectional laning and migrating cluster crystals in confined self-propelled particle systems. J. Phys.: Condens. Matter25 (50), 505103.
[80] Menzel, A. M.2015Tuned, driven, and active soft matter. Phys. Rep.554, 1-45.
[81] Mewis, J. & Wagner, N. J.2012Colloidal Suspension Rheology. Cambridge University Press. · Zbl 1274.76348
[82] Miyazaki, T.1984The effect of a circular disk on the motion of a small particle in a viscous fluid. J. Phys. Soc. Japan53 (3), 1017-1025.
[83] Moffatt, H. K.1964Viscous and resistive eddies near a sharp corner. J. Fluid Mech.18 (1), 1-18. · Zbl 0118.20501
[84] Oseen, C. W.1928Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig, Akademische Verlagsgesellschaft, M. B. H.
[85] Ostapenko, T., Schwarzendahl, F. J., Böddeker, T. J., Kreis, C. T., Cammann, J., Mazza, M. G. & Bäumchen, O.2018Curvature-guided motility of microalgae in geometric confinement. Phys. Rev. Lett.120, 068002.
[86] Ozarkar, S. S. & Sangani, A. S.2008A method for determining Stokes flow around particles near a wall or in a thin film bounded by a wall and a gas-liquid interface. Phys. Fluids20 (6), 063301. · Zbl 1182.76579
[87] Park, S.-Y. & Dimitrakopoulos, P.2013Transient dynamics of an elastic capsule in a microfluidic constriction. Soft Matt.9 (37), 8844-8855.
[88] Persson, F. & Tegenfeldt, J. O.2010DNA in nanochannels-directly visualizing genomic information. Chem. Soc. Rev.39 (3), 985-999.
[89] Polyanin, A. D. & Manzhirov, A. V.1998Handbook of Integral Equations. CRC Press. · Zbl 0896.45001
[90] Probstein, R. F.2005Physicochemical Hydrodynamics: An Introduction. John Wiley & Sons.
[91] Reisner, W., Morton, K. J., Riehn, R., Wang, Y. M., Yu, Z., Rosen, M., Sturm, J. C., Chou, S. Y., Frey, E. & Austin, R. H.2005Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett.94 (19), 196101.
[92] Richter, T.2017Fluid-structure Interactions: Models, Analysis and Finite Elements. , vol. 118. Springer. · Zbl 1374.76001
[93] Riehn, R., Lu, M., Wang, Y.-M., Lim, S. F., Cox, E. C. & Austin, R. H.2005Restriction mapping in nanofluidic devices. Proc. Natl Acad. Sci. USA102 (29), 10012-10016.
[94] Roy, C. J.2010 Review of discretization error estimators in scientific computing. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, p. 126.
[95] Saintillan, D., Shaqfeh, E. S. G. & Darve, E.2006Effect of flexibility on the shear-induced migration of short-chain polymers in parabolic channel flow. J. Fluid Mech.557, 297-306. · Zbl 1094.76006
[96] Shaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G. & Rieger, H.2020Computational models for active matter. Nat. Rev. Phys.2, 181-199.
[97] Smithies, F.1958Integral Equations. Cambridge University Press. · Zbl 0082.31901
[98] Sneddon, I. N.1960The elementary solution of dual integral equations. Glasgow Math. J.4 (3), 108-110. · Zbl 0118.31402
[99] Sneddon, I. N.1966Mixed Boundary Value Problems in Potential Theory. North-Holland. · Zbl 0139.28801
[100] Spiegel, M. R.1965Laplace Transforms. McGraw-Hill.
[101] Staben, M. E., Zinchenko, A. Z. & Davis, R. H.2003Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys. Fluids15 (6), 1711-1733. · Zbl 1186.76498
[102] Stein, D., Van Der Heyden, F. H. J., Koopmans, W. J. A. & Dekker, C.2006Pressure-driven transport of confined DNA polymers in fluidic channels. Proc. Natl Acad. Sci. USA103 (43), 15853-15858.
[103] Stokes, G. G.1851On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc.9, 8.
[104] Strychalski, E. A., Levy, S. L. & Craighead, H. G.2008Diffusion of DNA in nanoslits. Macromolecules41 (20), 7716-7721.
[105] Swan, J. W. & Brady, J. F.2007Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluids19 (11), 113306. · Zbl 1182.76735
[106] Swan, J. W. & Brady, J. F.2010Particle motion between parallel walls: hydrodynamics and simulation. Phys. Fluids22 (10), 103301.
[107] Swan, J. W. & Brady, J. F.2011The hydrodynamics of confined dispersions. J. Fluid Mech.687, 254-299. · Zbl 1241.76406
[108] Tang, J., Levy, S. L., Trahan, D. W., Jones, J. J., Craighead, H. G. & Doyle, P. S.2010Revisiting the conformation and dynamics of DNA in slitlike confinement. Macromolecules43 (17), 7368-7377.
[109] Thakore, V. & Hickman, J. J.2015Charge relaxation dynamics of an electrolytic nanocapacitor. J. Phys. Chem. C119 (4), 2121-2132.
[110] Tränkle, B., Ruh, D. & Rohrbach, A.2016Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces. Soft Matt.12 (10), 2729-2736.
[111] Trégouët, C., Salez, T., Monteux, C. & Reyssat, M.2018Transient deformation of a droplet near a microfluidic constriction: a quantitative analysis. Phys. Rev. Fluids3 (5), 053603.
[112] Trégouët, C., Salez, T., Monteux, C. & Reyssat, M.2019Microfluidic probing of the complex interfacial rheology of multilayer capsules. Soft Matt.15 (13), 2782-2790.
[113] Tricomi, F. G.1985Integral Equations. Courier Corporation.
[114] Turner, S. W., Perez, A. M., Lopez, A. & Craighead, H. G.1998Monolithic nanofluid sieving structures for DNA manipulation. J. Vac. Sci. Technol. B16 (6), 3835-3840.
[115] Uspal, W. E., Eral, H. B. & Doyle, P. S.2013Engineering particle trajectories in microfluidic flows using particle shape. Nat. Commun.4, 2666.
[116] Widder, D. V.2015Laplace Transform (PMS-6). Princeton University Press.
[117] Wolfram, S.1999The MATHEMATICA^® Book, Version 4. Cambridge University Press. · Zbl 0924.65002
[118] Wu, H., Farutin, A., Hu, W.-F., Thiébaud, M., Rafaï, S., Peyla, P., Lai, M.-C. & Misbah, C.2016Amoeboid swimming in a channel. Soft Matt.12 (36), 7470-7484.
[119] Wu, H., Thiébaud, M., Hu, W.-F., Farutin, A., Rafai, S., Lai, M.-C., Peyla, P. & Misbah, C.2015Amoeboid motion in confined geometry. Phys. Rev. E92 (5), 050701. · Zbl 1430.76331
[120] Xia, D., Yan, J. & Hou, S.2012Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis. Small8 (18), 2787-2801.
[121] Zöttl, A. & Stark, H.2016Emergent behavior in active colloids. J. Phys.: Condens. Matter28 (25), 253001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.