×

Modeling focal epileptic activity in the Wilson-cowan model with depolarization block. (English) Zbl 1357.92013

Summary: Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e., they saturate. We examined the effect of such a saturation in the Wilson-Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson-Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures.

MSC:

92C20 Neural biology
92C50 Medical applications (general)

Software:

MATCONT; pplane8
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314-9. · doi:10.1056/NEJM200002033420503
[2] Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, Van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshé SL, Nordli D, Plouin P, Scheffer IE. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51(4):676-85. · doi:10.1111/j.1528-1167.2010.02522.x
[3] Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain. 2014;137(8):2210-30. · doi:10.1093/brain/awu133
[4] Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. J Neurosci. 2006;26(48):12447-55. · doi:10.1523/JNEUROSCI.2787-06.2006
[5] Takano H, Coulter DA. Jasper’s basic mechanisms of the epilepsies [internet]. 4th ed. Bethesda: National Center for Biotechnology Information; 2012. p. 1-13. http://www.ncbi.nlm.nih.gov/books/NBK98171/
[6] Schevon CA, Weiss SA, McKhann G, Goodman RR, Yuste R, Emerson RG, Trevelyan AJ. Evidence of an inhibitory restraint of seizure activity in humans. Nat Commun. 2012;3:1060. · doi:10.1038/ncomms2056
[7] Marcuccilli CJ, Tryba AK, van Drongelen W, Koch H, Viemari JC, Peña-Ortega F, Doren EL, Pytel P, Chevalier M, Mrejeru A, Kohrman MH, Lasky RE, Lew SM, Frim DM, Ramirez J-M. Neuronal bursting properties in focal and parafocal regions in pediatric neocortical epilepsy stratified by histology. J Clin Neurophysiol. 2010;27(6):387-97. · doi:10.1097/WNP.0b013e3181fe06d8
[8] Ahmed O, Kramer M, Truccolo W, Naftulin J, Potter N, Eskandar E, Cosgrove G, Blum A, Hochberg L, Cash S. Inhibitory single neuron control of seizures and epileptic traveling waves in humans. BMC Neurosci. 2014;15(Suppl 1):3. · doi:10.1186/1471-2202-15-S1-F3
[9] Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12(1):1-24. · doi:10.1016/S0006-3495(72)86068-5
[10] Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13:55-80. · Zbl 0281.92003 · doi:10.1007/BF00288786
[11] Destexhe A, Sejnowski TJ. The Wilson-Cowan model, 36 years later. Biol Cybern. 2009;101(1):1-2. · Zbl 05613188 · doi:10.1007/s00422-009-0328-3
[12] Huang X, Troy W, Yang Q, Ma H, Laing C, Schiff S, Wu J. Spiral waves in disinhibited mammalian neocortex. J Neurosci. 2004;24(44):9897-902. · doi:10.1523/JNEUROSCI.2705-04.2004
[13] Ermentrout GB, Kleinfeld D. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron. 2001;29(1):33-44. · doi:10.1016/S0896-6273(01)00178-7
[14] Pinto D, Ermentrout GB. Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J Appl Math. 2001;62(1):206-55. · Zbl 1001.92021 · doi:10.1137/S0036139900346453
[15] van Drongelen W, Koch H, Elsen FP, Lee HC, Mrejeru A, Doren E, Marcuccilli CJ, Hereld M, Stevens RL, Ramirez JM. Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J Neurophysiol. 2006;96(5):2564-77. · doi:10.1152/jn.00446.2006
[16] Staff NP, Jung HY, Thiagarajan T, Yao M, Spruston N. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J Neurophysiol. 2000;84(5):2398-408.
[17] Busáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407-20. · doi:10.1038/nrn3241
[18] Johnston D, Brown TH. Giant synaptic potential hypothesis for epileptiform activity. Science. 1981;211(4479):294-7. · doi:10.1126/science.7444469
[19] Nunez PL. Neocortical dynamics and human EEG rhythms. Oxford: Oxford University Press; 1995.
[20] Izhikevich EM. Dynamical systems in neuroscience. Cambridge: MIT Press; 2010.
[21] Smith DR, Davidson CH. Maintained activity in neural nets. J ACM. 1962;9(2):268-79. · Zbl 0109.13601 · doi:10.1145/321119.321124
[22] Borisyuk RM, Kirillov AB. Bifurcation analysis of a neural network model. Biol Cybern. 1992;66(4):319-25. · Zbl 0737.92001 · doi:10.1007/BF00203668
[23] Borisyuk GN, Borisyuk RM, Khibnik AI, Roose D. Dynamics and bifurcations of two coupled neural oscillators with different connection types. Bull Math Biol. 1995;57(6):809-40. · Zbl 0836.92004 · doi:10.1007/BF02458296
[24] Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B. New features of the software MatCont for bifurcation analysis of dynamical systems. Math Comput Model Dyn Syst. 2008;14(2):147-75. · Zbl 1158.34302 · doi:10.1080/13873950701742754
[25] Polking JC. Ordinary differential equations using Matlab. 3rd ed. New York: Prentice Hall; 2004. PPlane8 is available at math.rice.edu/ dfield/matlab8/pplane8.m.
[26] Kuznetsov YA. Elements of applied bifurcation theory. 3rd ed. New York: Springer; 2004. · Zbl 1082.37002 · doi:10.1007/978-1-4757-3978-7
[27] Homburg, AJ; Sandstede, B.; Broer, H. (ed.); Takens, F. (ed.); Hasselblatt, B. (ed.), Homoclinic and heteroclinic bifurcations in vector fields, No. III, 379-524 (2010), Amsterdam · Zbl 1243.37024
[28] Wang Y, Goodfellow M, Taylor PN, Baier G. Dynamic mechanisms of neocortical focal seizure onset. PLoS Comput Biol. 2014;10(8):1003787. · doi:10.1371/journal.pcbi.1003787
[29] Yi F, DeCan E, Stoll K, Marceau E, Deisseroth K, Lawrence JJ. Muscarinic excitation of parvalbumin-positive interneurons contributes to the severity of pilocarpine-induced seizures. Epilepsia. 2015;56:297-309. · doi:10.1111/epi.12883
[30] Shusterman V, Troy WC. From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Phys Rev E. 2008;77(6):061911. · doi:10.1103/PhysRevE.77.061911
[31] Wendling F, Hernandez A, Bellanger J-J, Chauvel P, Bartolomei F. Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol. 2005;22(5):343-56.
[32] van Drongelen W, Lee HC, Hereld M, Chen Z, Elsen FP, Stevens RL. Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Trans Neural Syst Rehabil Eng. 2005;13(2):236-41. · doi:10.1109/TNSRE.2005.847387
[33] Nevado-Holgado AJ, Marten F, Richardson MP, Terry JR. Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution. NeuroImage. 2012;59:2374-92. · doi:10.1016/j.neuroimage.2011.08.111
[34] Wei Y, Ullah G, Ingram J, Schiff SJ. Oxygen and seizure dynamics: II. Computational modeling. J Neurophysiol. 2014;112(2):213-23. · doi:10.1152/jn.00541.2013
[35] Kuo C-C, Bean BP. Na+ channels must deactivate to recover from inactivation. Neuron. 1994;12(4):819-29. · doi:10.1016/0896-6273(94)90335-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.