×

The effects of time delay on the decline and propagation processes of population in the Malthus-Verhulst model with cross-correlated noises. (English) Zbl 1189.37096

Summary: The effects of time delay on the decline and propagation processes of population in the Malthus-Verhulst model with cross-correlated noises are investigated separately. Through numerically computing and stochastically simulating, we find that: (i) inclusion of time delay in the decline process, increasing the delay time \(\tau \) weakens the stability of population with short delay and strengthens it with long delay. The stability of population reduces monotonically as the cross-correlated intensity \(\lambda \) increasing. The population of a species goes to extinction with increasing \(\tau \) and increasing \(\lambda \); (ii) inclusion of time delay in the propagation process, the increasing \(\tau \) strengthens the stability of population and the increasing \(\lambda \) weakens it. The increasing \(\tau \) slows down the growth process of a species while the increasing \(\lambda \) speeds it up. That is, the increasing delay time does not affect roughly the stability of population with short delay but strengthens it with long delay, and the population of species is restricted in the lower level by the larger delay time. The stability of population is weakened and the replacement of old individuals with young ones is accelerated by the increasing cross-correlation intensity between two noises.

MSC:

37N25 Dynamical systems in biology
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P.F. Verhulst, Corr. Math. Phys. Publ. Part A. Quetelet. T. X, 113 (1838)
[2] R. Pearl, Q. Rev. Biol. II(4), 532 (1927) · doi:10.1086/394288
[3] R. Graham, M. Höhnerbach, A. Schenzle, Phys. Rev. Lett. 48, 1396 (1982) · doi:10.1103/PhysRevLett.48.1396
[4] F. de Pasquale, A. Mecozzi, Phys. Rev. A 31, 2454 (1985) · doi:10.1103/PhysRevA.31.2454
[5] J.J. Bery, C. Aizpuru, M. Morillo, Physica A 142, 637 (1987) · doi:10.1016/0378-4371(87)90047-1
[6] S.P. Kapitza, Usp. Fiz. Nauk 166, 63 (1996) · doi:10.3367/UFNr.0166.199601c.0063
[7] A. Johansen, D. Sornette, Physica A 294, 465 (2001) · Zbl 0984.92512 · doi:10.1016/S0378-4371(01)00105-4
[8] K. Ide, D. Sornette, Physica A 307, 63 (2002) · Zbl 0994.37012 · doi:10.1016/S0378-4371(01)00585-4
[9] S. Ciuchi, F. de Pasquale, B. Spagnolo, Phys. Rev. E 54, 706 (1996) · doi:10.1103/PhysRevE.54.706
[10] D. Strzałka, F. Grabowski, Physica A 387, 2511 (2008) · Zbl 1147.82026
[11] R. Zygadło, Phys. Rev. E 47, 106 (1993) · doi:10.1103/PhysRevE.47.106
[12] R. Zygadło, Phys. Rev. E 54, 5964 (1996) · doi:10.1103/PhysRevE.54.5964
[13] R. Zygadło, Phys. Rev. E 47, 4067 (1993) · doi:10.1103/PhysRevE.47.4067
[14] H. Calisto, M. Bologna, Phys. Rev. E 75, 050103(R) (2007) · doi:10.1103/PhysRevE.75.050103
[15] R. Zygadło, Phys. Rev. E 77, 021130 (2008) · doi:10.1103/PhysRevE.77.021130
[16] N.S. Goel, N.R. Dyn, Stochastic Models in Biology (Academic Press, New York, 1974)
[17] W. Horsthemke, R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology, Springer Series in Synergetics (Springer, Berlin, 1984) · Zbl 0529.60085
[18] M.O. Cáceres, J. Stat. Phys. 132, 487 (2008) · Zbl 1144.82050 · doi:10.1007/s10955-008-9554-7
[19] M. Borromeo, S. Giusepponi, F. Marchesoni, Phys. Rev. E 74, 031121 (2006) · doi:10.1103/PhysRevE.74.031121
[20] M. Borromeo, F. Marchesoni, Phys. Rev. E 75, 041106 (2007) · doi:10.1103/PhysRevE.75.041106
[21] A. Fuliński, T. Telejko, Phys. Lett. A 152, 11 (1991) · doi:10.1016/0375-9601(91)90619-J
[22] Z.L. Jia, Physica A 387, 6247 (2008) · doi:10.1016/j.physa.2008.07.018
[23] N.S. Goel, S.C. Maitra, E.W. Montroll, Rev. Mod. Phys. 43, 231 (1971) · doi:10.1103/RevModPhys.43.231
[24] J.M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics (Springer-Verlag, New York, 1977), Vol. 20 · Zbl 0363.92014
[25] P. Tass, J. Kurths, M.G. Rosenblum, G. Guasti, H. Hefter, Phys. Rev. E 54, R2224 (1996) · doi:10.1103/PhysRevE.54.R2224
[26] C.W. Eurich, J.G. Milton, Phys. Rev. E 54, 6681 (1996) · doi:10.1103/PhysRevE.54.6681
[27] S.H. Park, S. Kim, H. Pyo, S. Lee, Phys. Rev. E 60, 4962 (1999) · doi:10.1103/PhysRevE.60.4962
[28] J.L. Cabrera, J.G. Milton, Phys. Rev. Lett. 89, 158702 (2002) · doi:10.1103/PhysRevLett.89.158702
[29] M. Rosenblum, A. Pikovsky, Phys. Rev. E 70, 041904 (2004) · doi:10.1103/PhysRevE.70.041904
[30] L.R. Nie, D.C. Mei, Europhys. Lett. 79, 20005 (2007) · doi:10.1209/0295-5075/79/20005
[31] L.R. Nie, D.C. Mei, Phys. Rev. E 77, 031107 (2008) · doi:10.1103/PhysRevE.77.031107
[32] G.Q. Cai, Y.K. Lin, Phys. Rev. E 76, 041913 (2007) · doi:10.1103/PhysRevE.76.041913
[33] A.R. Palmer, D. Jiang, D. McAlpine, J. Neurophysiol. 81, 722 (1999)
[34] D.L. Gilden, Psychol. Rev. 108, 33 (2001) · doi:10.1037/0033-295X.108.1.33
[35] J.F. Feng, J. Theor. Biol. 222, 151 (2003) · doi:10.1016/S0022-5193(03)00022-5
[36] Z.S. Wang, Z.Y. He, J.D.Z. Chen, IEEE Trans. Biomed. Eng. 52, 454 (2005) · doi:10.1109/TBME.2004.843287
[37] K. Saberi, A. Petrosyan, J. Theor. Biol. 235, 45 (2005) · doi:10.1016/j.jtbi.2004.12.018
[38] J.C. Li, D.C. Mei, Acta. Phys. Sin. 57, 6792 (2008)
[39] S. Guillouzic, I. L’Heureux, A. Longtin, Phys. Rev. E 59, 3970 (1999) · doi:10.1103/PhysRevE.59.3970
[40] T.D. Frank, Phys. Rev. E 72, 011112 (2005) · doi:10.1103/PhysRevE.72.011112
[41] T.R. Malthus, An Essay on the Principle of Population (Penguin, Harmondsworth, England, 1798)
[42] L. von Bertalanffy, General System Theory: Foundations, Development, Applications, revised edition (George Braziller, New York, 1976)
[43] F.J. Richards, J. Exp. Bot. 10, 290 (1959) · doi:10.1093/jxb/10.2.290
[44] J.H. Li, Z.Q. Huang, Phys. Rev. E 57, 3917 (1998) · doi:10.1103/PhysRevE.57.3917
[45] J.H. Li, Z.Q. Huang, Phys. Rev. E 58, 139 (1998) · doi:10.1103/PhysRevE.58.139
[46] M. Borromeo, F. Marchesoni, Chaos 15, 026110 (2005) · doi:10.1063/1.1858651
[47] T.D. Frank, P.J. Beek, R. Friedrich, Phys. Rev. E 68, 021912 (2003) · doi:10.1103/PhysRevE.68.021912
[48] A.A. Budini, M.O. Cáceres, Phys. Rev. E 70, 046104 (2004) · doi:10.1103/PhysRevE.70.046104
[49] H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1989) · Zbl 0665.60084
[50] K. Lindenberg, B.J. West, J. Stat. Phys. 42, 201 (1986) · doi:10.1007/BF01010847
[51] J. Masoliver, B.J. West, K. Lindenberg, Phys. Rev. A 35, 3086 (1987) · doi:10.1103/PhysRevA.35.3086
[52] Y. Jia, J.R. Li, Phys. Rev. E 53, 5764 (1996) · doi:10.1103/PhysRevE.53.5764
[53] Y. Jia, S.M. Yu, J.R. Li, Phys. Rev. E 62, 1869 (2000) · doi:10.1103/PhysRevE.62.1869
[54] Q. Liu, Y. Jia, Phys. Rev. E 70, 041907 (2004) · doi:10.1103/PhysRevE.70.041907
[55] C.W. Gardiner, Handbook of Stochastic Methods, Springer Series in Synergetics (Springer-Verlag, Berlin, 1983), Vol. 13 · Zbl 0515.60002
[56] E. Guardia, M. San Miguel, Phys. Lett. A 109, 9 (1985) · doi:10.1016/0375-9601(85)90380-9
[57] D.C. Mei, C.W. Xie, L. Zhang, Eur. Phys. J. B 41, 107 (2004) · doi:10.1140/epjb/e2004-00300-1
[58] J.M. Sancho, M. San Miguel, S.L. Katz, J.D. Gunton, Phys. Rev. A 26, 1589 (1982) · doi:10.1103/PhysRevA.26.1589
[59] D.E. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, MA, 1969), Vol. 2 · Zbl 0191.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.