×

zbMATH — the first resource for mathematics

Heterotic free fermionic and symmetric toroidal orbifold models. (English) Zbl 1388.81428
Summary: Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for \( {\mathbb{Z}}_2\times {\mathbb{Z}}_2 \) orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: we give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all \(\mathbb{Z}_2\times \mathbb{Z}_2 \) orbifold geometries in six dimensions.

MSC:
81T25 Quantum field theory on lattices
Software:
CARAT; Orbifolder
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Candelas, P.; Horowitz, GT; Strominger, A.; Witten, E., Vacuum configurations for superstrings, Nucl. Phys., B 258, 46, (1985)
[2] Dixon, LJ; Harvey, JA; Vafa, C.; Witten, E., Strings on orbifolds, Nucl. Phys., B 261, 678, (1985)
[3] L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2, Nucl. Phys.B 274 (1986) 285 [INSPIRE].
[4] Ibáñez, LE; Nilles, HP; Quevedo, F., Orbifolds and Wilson lines, Phys. Lett., B 187, 25, (1987)
[5] Ibáñez, LE; Mas, J.; Nilles, H-P; Quevedo, F., Heterotic strings in symmetric and asymmetric orbifold backgrounds, Nucl. Phys., B 301, 157, (1988)
[6] Antoniadis, I.; Bachas, CP; Kounnas, C., Four-dimensional superstrings, Nucl. Phys., B 289, 87, (1987)
[7] Antoniadis, I.; Bachas, C., 4D fermionic superstrings with arbitrary twists, Nucl. Phys., B 298, 586, (1988)
[8] Kawai, H.; Lewellen, DC; Henry Tye, S-H, Construction of fermionic string models in four-dimensions, Nucl. Phys., B 288, 1, (1987)
[9] Kawai, H.; Lewellen, DC; Schwartz, JA; Henry Tye, S-H, The spin structure construction of string models and multiloop modular invariance, Nucl. Phys., B 299, 431, (1988)
[10] Gepner, D., exactly solvable string compactifications on manifolds of SU(\(N\) ) holonomy, Phys. Lett., B 199, 380, (1987)
[11] Greene, BR; Plesser, MR, Duality in Calabi-Yau moduli space, Nucl. Phys., B 338, 15, (1990)
[12] Candelas, P.; Lynker, M.; Schimmrigk, R., Calabi-Yau manifolds in weighted P_{4}, Nucl. Phys., B 341, 383, (1990) · Zbl 0962.14029
[13] Candelas, P.; Ossa, XC; Green, PS; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys., B 359, 21, (1991) · Zbl 1098.32506
[14] Narain, KS, new heterotic string theories in uncompactified dimensions < 10, Phys. Lett., B 169, 41, (1986)
[15] Narain, KS; Sarmadi, MH; Witten, E., A note on toroidal compactification of heterotic string theory, Nucl. Phys., B 279, 369, (1987)
[16] Bagger, J.; Nemeschansky, D.; Seiberg, N.; Yankielowicz, S., Bosons, fermions and Thirring strings, Nucl. Phys., B 289, 53, (1987)
[17] Chang, D.; Kumar, A., Mechanisms of spontaneous symmetry breaking in the fermionic construction of superstring models, Phys. Rev., D 38, 1893, (1988)
[18] Bailin, D.; Love, A., Orbifold compactifications of string theory, Phys. Rept., 315, 285, (1999)
[19] Choi, K-S; Kim, JE, Quarks and leptons from orbifolded superstring, Lect. Notes Phys., 696, 1, (2006) · Zbl 1114.81002
[20] W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett.96 (2006) 121602 [hep-ph/0511035] [INSPIRE]. · Zbl 1149.81344
[21] Buchmüller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string (II), Nucl. Phys., B 785, 149, (2007) · Zbl 1149.81344
[22] Lebedev, O.; etal., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett., B 645, 88, (2007) · Zbl 1256.81094
[23] Lebedev, O.; etal., The heterotic road to the MSSM with R parity, Phys. Rev., D 77, 046013, (2008)
[24] O. Lebedev, H.P. Nilles, S. Ramos-Sánchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z_{6}orbifold, Phys. Lett.B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].
[25] Mayorga Pena, DK; Nilles, HP; Oehlmann, P-K, A zip-code for quarks, leptons and Higgs bosons, JHEP, 12, 024, (2012)
[26] J.E. Kim and B. Kyae, String MSSM through flipped SU(5) from Z_{12}orbifold, hep-th/0608085 [INSPIRE]. · Zbl 1119.81088
[27] J.E. Kim, J.-H. Kim and B. Kyae, Superstring standard model from Z_{12−\(I\)}orbifold compactification with and without exotics and effective R-parity, JHEP06 (2007) 034 [hep-ph/0702278] [INSPIRE].
[28] Groot Nibbelink, S.; Loukas, O., MSSM-like models on Z_{8}toroidal orbifolds, JHEP, 12, 044, (2013) · Zbl 1342.83415
[29] Nilles, HP; Vaudrevange, PKS, Geography of fields in extra dimensions: string theory lessons for particle physics, Mod. Phys. Lett., A 30, 1530008, (2015) · Zbl 1310.81007
[30] Antoniadis, I.; Ellis, JR; Hagelin, JS; Nanopoulos, DV, the flipped SU(5) × U(1) string model revamped, Phys. Lett., B 231, 65, (1989)
[31] Faraggi, AE; Nanopoulos, DV; Yuan, K-J, A standard like model in the 4D free fermionic string formulation, Nucl. Phys., B 335, 347, (1990)
[32] Faraggi, AE, A new standard-like model in the four-dimensional free fermionic string formulation, Phys. Lett., B 278, 131, (1992)
[33] Faraggi, AE, Construction of realistic standard-like models in the free fermionic superstring formulation, Nucl. Phys., B 387, 239, (1992)
[34] Antoniadis, I.; Leontaris, GK; Rizos, J., A three generation SU(4) × \(O\)(4) string model, Phys. Lett., B 245, 161, (1990)
[35] G.B. Cleaver, A.E. Faraggi and D.V. Nanopoulos, String derived MSSM and M-theory unification, Phys. Lett.B 455 (1999) 135 [hep-ph/9811427] [INSPIRE]. · Zbl 1016.81506
[36] G.B. Cleaver, A.E. Faraggi and C. Savage, Left-right symmetric heterotic string derived models, Phys. Rev.D 63 (2001) 066001 [hep-ph/0006331] [INSPIRE].
[37] Assel, B.; Christodoulides, K.; Faraggi, AE; Kounnas, C.; Rizos, J., Classification of heterotic Pati-Salam models, Nucl. Phys., B 844, 365, (2011) · Zbl 1207.81099
[38] Bernard, L.; Faraggi, AE; Glasser, I.; Rizos, J.; Sonmez, H., string derived exophobic SU(6) × SU(2) GUTs, Nucl. Phys., B 868, 1, (2013) · Zbl 1262.81126
[39] Faraggi, A.; Rizos, J.; Sonmez, H., classification of flipped SU(5) heterotic-string vacua, Nucl. Phys., B 886, 202, (2014) · Zbl 1325.81138
[40] Faraggi, AE; Rizos, J., A light Z\^{′}heterotic-string derived model, Nucl. Phys., B 895, 233, (2015) · Zbl 1329.81310
[41] A.E. Faraggi, \(Z\)_{2} × \(Z\)_{2}orbifold compactification as the origin of realistic free fermionic models, Phys. Lett.B 326 (1994) 62 [hep-ph/9311312] [INSPIRE].
[42] Faraggi, AE, Partition functions of NAHE: based free fermionic string models, Phys. Lett., B 544, 207, (2002) · Zbl 0997.81607
[43] Kiritsis, E.; Kounnas, C., perturbative and nonperturbative partial supersymmetry breaking: N = 4 → \(N\) = 2 → \(N\) = 1, Nucl. Phys., B 503, 117, (1997) · Zbl 0979.81570
[44] Berglund, P.; Ellis, JR; Faraggi, AE; Nanopoulos, DV; Qiu, Z., toward the M (\(F\) ) theory embedding of realistic free fermion models, Phys. Lett., B 433, 269, (1998)
[45] Berglund, P.; Ellis, JR; Faraggi, AE; Nanopoulos, DV; Qiu, Z., elevating the free fermion Z_{2} × \(Z\)_{2}orbifold model to a compactification of F-theory, Int. J. Mod. Phys., A 15, 1345, (2000) · Zbl 1049.81579
[46] Donagi, R.; Faraggi, AE, on the number of chiral generations in Z_{2} × \(Z\)_{2}orbifolds, Nucl. Phys., B 694, 187, (2004) · Zbl 1130.81352
[47] Faraggi, AE; Förste, S.; Timirgaziu, C., \(Z\)_{2} × \(Z\)_{2}heterotic orbifold models of non factorisable six dimensional toroidal manifolds, JHEP, 08, 057, (2006)
[48] I. Florakis, Théorie des cordes et applications phénoménologiques et cosmologiques (in French), Ph.D. thesis, École Normale Supérieure, Université Paris VI, Paris France July 2011.
[49] Ginsparg, PH, Comment on toroidal compactification of heterotic superstrings, Phys. Rev., D 35, 648, (1987)
[50] Vafa, C.; Witten, E., On orbifolds with discrete torsion, J. Geom. Phys., 15, 189, (1995) · Zbl 0816.53053
[51] Plöger, F.; Ramos-Sánchez, S.; Ratz, M.; Vaudrevange, PKS, Mirage torsion, JHEP, 04, 063, (2007)
[52] Nilles, HP; Ramos-Sanchez, S.; Vaudrevange, PKS; Wingerter, A., The orbifolder: a tool to study the low energy effective theory of heterotic orbifolds, Comput. Phys. Commun., 183, 1363, (2012)
[53] Fischer, M.; Ratz, M.; Torrado, J.; Vaudrevange, PKS, Classification of symmetric toroidal orbifolds, JHEP, 01, 084, (2013) · Zbl 1342.81360
[54] Donagi, R.; Wendland, K., On orbifolds and free fermion constructions, J. Geom. Phys., 59, 942, (2009) · Zbl 1166.81033
[55] Opgenorth, J.; Plesken, W.; Schulz, T., Crystallographic algorithms and tables, Acta Cryst., A 54, 517, (1998) · Zbl 1176.20051
[56] W. Plesken, The CARAT computer package, http://wwwb.math.rwth-aachen.de/carat/index.html, (1998).
[57] Dienes, KR; Faraggi, AE, Gauge coupling unification in realistic free fermionic string models, Nucl. Phys., B 457, 409, (1995) · Zbl 1003.81574
[58] Dreiner, HK; Lopez, JL; Nanopoulos, DV; Reiss, DB, String model building in the free fermionic formulation, Nucl. Phys., B 320, 401, (1989)
[59] Antoniadis, I.; Ellis, JR; Hagelin, JS; Nanopoulos, DV, GUT model building with fermionic four-dimensional strings, Phys. Lett., B 205, 459, (1988)
[60] Antoniadis, I.; Ellis, JR; Hagelin, JS; Nanopoulos, DV, an improved SU(5) × U(1) model from four-dimensional string, Phys. Lett., B 208, 209, (1988)
[61] A.E. Faraggi and D.V. Nanopoulos, Naturalness of three generations in free fermionic Z_{2}\^{\(n\)} ⊗ \(Z\)_{4}string models, Phys. Rev.D 48 (1993) 3288 [INSPIRE].
[62] Faraggi, AE; Kounnas, C.; Nooij, SEM; Rizos, J., classification of the chiral Z_{2} × \(Z\)_{2}fermionic models in the heterotic superstring, Nucl. Phys., B 695, 41, (2004) · Zbl 1213.81194
[63] Blaszczyk, M.; Groot Nibbelink, S.; Ratz, M.; Ruehle, F.; Trapletti, M.; Vaudrevange, PKS, A Z_{2} × \(Z\)_{2}standard model, Phys. Lett., B 683, 340, (2010) · Zbl 1291.81296
[64] Denef, F.; Douglas, MR; Florea, B.; Grassi, A.; Kachru, S., Fixing all moduli in a simple F-theory compactification, Adv. Theor. Math. Phys., 9, 861, (2005) · Zbl 1129.81065
[65] S. Reffert, Toroidal orbifolds: resolutions, orientifolds and applications in string phenomenology, hep-th/0609040 [INSPIRE].
[66] Groot Nibbelink, S.; Trapletti, M.; Walter, M., resolutions of C\^{\(n\)}/Z_{\(n\)}orbifolds, their U(1) bundles and applications to string model building, JHEP, 03, 035, (2007)
[67] Groot Nibbelink, S.; Held, J.; Ruehle, F.; Trapletti, M.; Vaudrevange, PKS, heterotic Z_{6−II}MSSM orbifolds in blowup, JHEP, 03, 005, (2009)
[68] Blaszczyk, M.; Groot Nibbelink, S.; Ruehle, F.; Trapletti, M.; Vaudrevange, PKS, Heterotic MSSM on a resolved orbifold, JHEP, 09, 065, (2010) · Zbl 1291.81296
[69] Blaszczyk, M.; Groot Nibbelink, S.; Ruehle, F., Gauged linear σ-models for toroidal orbifold resolutions, JHEP, 05, 053, (2012) · Zbl 1348.81294
[70] B. Ananthanarayan, K.S. Babu and Q. Shafi, Supersymmetric models with tan β close to unity, Nucl. Phys.B 428 (1994) 19 [hep-ph/9402284] [INSPIRE].
[71] A.E. Faraggi, Doublet triplet splitting in realistic heterotic string derived models, Phys. Lett.B 520 (2001) 337 [hep-ph/0107094] [INSPIRE]. · Zbl 1021.81065
[72] T. Kobayashi, S.L. Parameswaran, S. Ramos-Sanchez and I. Zavala, Revisiting coupling selection rules in heterotic orbifold models, JHEP05 (2012) 008 [Erratum ibid.12 (2012) 049] [arXiv:1107.2137] [INSPIRE].
[73] Nilles, HP; Ramos-Sánchez, S.; Ratz, M.; Vaudrevange, PKS, A note on discrete R symmetries in Z_{6−II}orbifolds with Wilson lines, Phys. Lett., B 726, 876, (2013) · Zbl 1331.81138
[74] Cabo Bizet, NG; Kobayashi, T.; Mayorga Pena, DK; Parameswaran, SL; Schmitz, M.; Zavala, I., Discrete R-symmetries and anomaly universality in heterotic orbifolds, JHEP, 02, 098, (2014)
[75] Faraggi, AE, Yukawa couplings in superstring derived standard like models, Phys. Rev., D 47, 5021, (1993)
[76] Beye, F.; Kobayashi, T.; Kuwakino, S., Gauge symmetries in heterotic asymmetric orbifolds, Nucl. Phys., B 875, 599, (2013) · Zbl 1331.81186
[77] Beye, F.; Kobayashi, T.; Kuwakino, S., Three-generation asymmetric orbifold models from heterotic string theory, JHEP, 01, 013, (2014)
[78] Condeescu, C.; Florakis, I.; Lüst, D., Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP, 04, 121, (2012) · Zbl 1348.81362
[79] Condeescu, C.; Florakis, I.; Kounnas, C.; Lüst, D., gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFT’\(s\), JHEP, 10, 057, (2013) · Zbl 1342.83463
[80] S. Groot Nibbelink and P.K.S. Vaudrevange, Asymmetric heterotic orbifolds, work in progress (2016). · Zbl 1378.83087
[81] Blaszczyk, M.; Groot Nibbelink, S.; Loukas, O.; Ramos-Sanchez, S., Non-supersymmetric heterotic model building, JHEP, 10, 119, (2014) · Zbl 1333.81315
[82] Nibbelink, SG, model building with the non-supersymmetric heterotic SO(16) × SO(16) string, J. Phys. Conf. Ser., 631, 012077, (2015)
[83] Abel, S.; Dienes, KR; Mavroudi, E., Towards a nonsupersymmetric string phenomenology, Phys. Rev., D 91, 126014, (2015)
[84] J.M. Ashfaque, P. Athanasopoulos, A.E. Faraggi and H. Sonmez, Non-tachyonic semi-realistic non-supersymmetric heterotic string vacua, arXiv:1506.03114 [INSPIRE].
[85] Angelantonj, C.; Florakis, I.; Tsulaia, M., Universality of gauge thresholds in non-supersymmetric heterotic vacua, Phys. Lett., B 736, 365, (2014) · Zbl 1317.81157
[86] Faraggi, AE; Kounnas, C.; Partouche, H., Large volume SUSY breaking with a solution to the decompactification problem, Nucl. Phys., B 899, 328, (2015) · Zbl 1331.81274
[87] Angelantonj, C.; Florakis, I.; Tsulaia, M., Generalised universality of gauge thresholds in heterotic vacua with and without supersymmetry, Nucl. Phys., B 900, 170, (2015) · Zbl 1331.81231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.