zbMATH — the first resource for mathematics

A finite element multigrid-framework to solve the sea ice momentum equation. (English) Zbl 1380.86005
Summary: We present a multigrid framework for the solution of the momentum equation arising in Hibler’s viscous-plastic (VP) sea ice model. This model is used in global climate models, for seasonal prediction and high-resolution short-term forecasting systems. The development of fast and robust solvers for the strongly nonlinear momentum equation is still a big issue. There are mainly three approaches to solve the momentum equation: a fixed-point iteration (Picard solver), an inexact Newton method and a subcycling procedure based on an elastic-viscous-plastic (EVP) model approximation. Simple fixed-point iterations call for a vast number of cycles. The Jacobian arising in Newton linearizations is ill-conditioned and unstructured. No efficient linear solvers are available up to date. One possibility to solve the linear systems arising within a Newton method is the preconditioned GMRES iteration that however still requires many steps. The commonly used line SOR preconditioner is computationally expensive. Especially on fine meshes, literature recommends to revise common solution strategies. We introduce a geometric multigrid method as a preconditioner to the GMRES iteration for accelerating the solution of the linear problems. We show that the convergence rate of the multigrid method is robust with respect to mesh refinement. This makes it an appealing method for high resolution simulations. We validate the robustness of the linear solver and compare the multigrid with ILU preconditioning. In particular on fine meshes (\(\sim16\,\mathrm{km}\)–\(2\,\mathrm{km}\)), multigrid preconditioning can substantially reduce the computational effort and decreases iteration counts by 80%.
86A05 Hydrology, hydrography, oceanography
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Bastian, P.; Birken, K.; Johannsen, K.; Lang, S.; Reichenberger, V.; Wieners, C.; Wittum, G.; Wrobel, C., Parallel solutions of partial differential equations with adaptive multigrid methods on unstructured grids, (High Performance Computing in Science and Engineering II, (1999))
[2] Becker, R.; Braack, M., Multigrid techniques for finite elements on locally refined meshes, Numer. Linear Algebra Appl., 7, 363-379, (2000), Special Issue · Zbl 1051.65117
[3] Becker, R.; Braack, M.; Meidner, D.; Richter, T.; Vexler, B., The finite element toolkit gascoigne
[4] Bouchat, A.; Tremblay, B., Energy dissipation in viscous-plastic sea-ice models, J. Geophys. Res., 119, 976-994, (2014)
[5] Bouillon, S.; Fichefet, T.; Legat, V.; Madec, G., The elastic-viscous-plastic method revisited, Ocean Model., 71, 2-12, (2013)
[6] Broersen, D.; Dahmen, W.; Stevenson, R. P., On the stability of DPG formulations of transport equations, Math. Comput., (2017), online first · Zbl 1383.65102
[7] Danilov, S.; Wang, Q.; Timmermann, R.; Iakovlev, N.; Sidorenko, D.; Kimmritz, M.; Jung, T.; Schröter, J., Finite-element sea ice model (FESIM), version 2, Geosci. Model Dev., 8, 1747-1761, (2015)
[8] Deuflhard, P., Newton methods for nonlinear problems. affine invariance and adaptive algorithms, Comput. Math., vol. 35, (2011), Springer · Zbl 1226.65043
[9] Donea, J., A Taylor-Galerkin method for convective transport problems, Int. J. Numer. Methods Eng., 20, 101-119, (1984) · Zbl 0524.65071
[10] Dupont, F.; Bourdalle-Badie, R.; Higginson, S.; Lu, Y.; Roy, F.; Smith, G. C.; Lemieux, J. F.; Garric, G.; Davidson, F., A high-resolution Ocean and sea-ice modelling system for the arctic and north atlantic oceans, Geosci. Model Dev., 8, (2015)
[11] Frei, S.; Richter, T., A locally modified parametric finite element method for interface problems, SIAM J. Numer. Anal., 52, 5, 2315-2334, (2014) · Zbl 1310.65145
[12] Girard, L.; Bouillon, S.; Weiss, J.; Amitrano, D.; Fichefet, T.; Thierry, L.; Legat, V., A new modeling framework for sea-ice mechanics based on elasto-brittle rheology, Ann. Glaciol., 52, 123-132, (2011)
[13] Hackbusch, W., Multi-grid methods and applications, (1985), Springer · Zbl 0585.65030
[14] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Eng., 191, 5537-5552, (2002) · Zbl 1035.65125
[15] Hibler, W. D., A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815-846, (1979)
[16] Hunke, E. C., Viscous-plastic sea ice dynamics with the EVP model: linearization issues, J. Comp. Physiol., 170, 18-38, (2001) · Zbl 1030.74032
[17] Hunke, E. C.; Dukowicz, J. K., An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849-1867, (1997)
[18] Hunke, E. C.; Lipscomb, W. H.; Tuner, A. K., Sea-ice models for climate study: retrospective and new directions, J. Glaciol., 200, 1162-1172, (2010)
[19] Ip, C. F.; Hibler, W. D.; Flato, G. M., On the effect of rheology on seasonal sea-ice simulations, Ann. Glaciol., 15, 17-25, (1991)
[20] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 359-392, (1999) · Zbl 0915.68129
[21] Kimmritz, M.; Danilov, S.; Losch, M., On the convergence of the modified elastic-viscous-plastic method for solving the sea ice momentum equation, J. Comp. Physiol., 296, 90-100, (2015) · Zbl 1352.86021
[22] Kimmritz, M.; Danilov, S.; Losch, M., The adaptive EVP method for solving the sea ice momentum equation, Ocean Model., 101, 59-67, (2016)
[23] Kimmritz, M.; Richter, T., Parallel multigrid method for finite element simulations of complex flow problems on locally refined meshes, Numer. Linear Algebra Appl., 18, 615-636, (2010) · Zbl 1265.76043
[24] Knoll, D.; Keyes, D., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comp. Physiol., 193, 357-397, (2004) · Zbl 1036.65045
[25] Kreyscher, M.; Harder, M.; Lemke, P.; Flato, G.; Gregory, M., Results of the sea ice model intercomparison project: evaluation of sea ice rheology schemes for use in climate simulations, J. Geophys. Res., 105, 11299-11320, (2000)
[26] Kuzmin, D., Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis, Int. J. Numer. Math. Fluids, 71, 1178-1190, (2013)
[27] Kuzmin, D.; Hämäläinen, J., Finite element methods for computational fluid dynamics, (2015), SIAM · Zbl 1317.76001
[28] Kwok, R.; Hunke, E. C.; Maslowski, D.; Zhang, J., Variability of sea ice simulations assessed with RGPS kinematics, J. Geophys. Res., 113, C11, (2008)
[29] Lemieux, J. F.; Tremblay, B.; Thomas, S.; Sedlaček, J.; Mysak, L. A., Using the preconditioned generalized minimum residual (GMRES) method to solve the sea-ice momentum equation, J. Geophys. Res., 113, C10, (2008)
[30] Lemieux, J. F.; Beaudoin, C.; Dupont, F.; Roy, F.; Smith, G.; Shlyaeva, A.; Buehner, M.; Caya, A.; Chen, J.; Carrieres, T.; Pogson, L.; DeRepentigny, P.; Plante, A.; Pestieau, P.; Pellerin, P.; Ritchie, H.; Garric, G.; Ferry, N., The regional ice prediction system (RIPS): verification of forecast sea ice concentration, Q. J. R. Meteorol. Soc., 142, 695, 632-643, (2016)
[31] Lemieux, J. F.; Knoll, D.; Losch, M.; Girard, C., A second-order accurate in time implicit-explicit (IMEX) integration scheme for sea ice dynamics, J. Comp. Physiol., 263, 375-392, (2014) · Zbl 1349.86006
[32] Lemieux, J. F.; Knoll, D.; Tremblay, B.; Holland, D.; Losch, M., A comparison of the Jacobian-free Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic formulation: a serial algorithm study, J. Comp. Physiol., 231, 5926-5944, (2012)
[33] Lemieux, J. F.; Tremblay, B., Numerical convergence of viscous-plastic sea ice models, J. Geophys. Res., 114, C5, (2009)
[34] Lemieux, J. F.; Tremblay, B.; Sedláček, J.; Tupper, P.; Thomas, S.; Huard, D.; Auclair, J. P., Improving the numerical convergence of viscous-plastic sea ice models with the Jacobian-free Newton-Krylov method, J. Comp. Physiol., 229, 2840-2852, (2010) · Zbl 1184.86004
[35] Lindsay, R. W.; Zhang, J.; Rothrock, D. A., Sea-ice deformation rates from satellite measurements and in a model, Atmos.-Ocean, 41, 35-47, (2003)
[36] Losch, M.; Danilov, S., On solving the momentum equations of dynamic sea ice models with implicit solvers and the elastic-viscous-plastic technique, Ocean Model., 41, 42-52, (2012)
[37] Losch, M.; Fuchs, A.; Lemieux, J. F.; Vanselow, A., A parallel jacobian-free Newton-Krylov solver for a coupled sea ice-Ocean model, J. Comp. Physiol., 257, 901-911, (2014) · Zbl 1349.86008
[38] Mandal, S.; Ouazzi, A.; Turek, S., Modified Newton solver for yield stress fluids, (Proceedings of ENUMATH 2015, the 11th European Conference on Numerical Mathematics and Advanced Applications, Lect. Notes Comput. Sci. Eng., vol. 112, (2016), Springer), 481-490 · Zbl 1387.76058
[39] Mehlmann, C., Numerische analyse eines meereis-modells mit visko-plastischem materialgesetz, (2015), Universität Heidelberg, Master’s thesis
[40] Mehlmann, C.; Richter, T., A modified global Newton solver for viscous-plastic sea ice models, Ocean Model., 116, 96-107, (2017)
[41] McInnes, L. C.; Hovland, P. D., Parallel simulation of compressible flow using automatic differentiation and petsc, Parallel Comput., 27, 503-519, (2001) · Zbl 0972.68165
[42] Richter, T., A monolithic geometric multigrid solver for fluid-structure interactions in ale formulation, Int. J. Numer. Methods Eng., 104, 372-390, (2015) · Zbl 1352.76066
[43] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS Publishing Company · Zbl 1002.65042
[44] Schulson, E. M.; Fortt, A. L.; Iliescu, D.; Renshaw, C. E., Failure envelope of first-year arctic sea ice: the role of friction in compressive fracture, J. Geophys. Res., 111, C11, (2006)
[45] Semtner, A. J., A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379-389, (1976)
[46] Timmermann, R.; Danilov, S.; Schröter, J.; Boening, C.; Sidorenko, D.; Rollenhagen, K., Ocean circulation and sea ice distribution in a finite element global sea ice Ocean model, Ocean Model., 27, 114-129, (2009)
[47] Tremblay, B.; Mysak, L. A., Modeling sea ice as a granular material, including the dilatancy effect, J. Phys. Oceanogr., 27, 2342-2360, (1997)
[48] Untersteiner, N.; Thorndike, A. S.; Rothrock, D. A.; Hunkins, K. L., AIDJEX revisited: a look back at the U.S.-Canadian arctic ice dynamics joint experiment 1970-78, Arctic, 60, 327-336, (2007)
[49] Wesseling, P., An introduction to multigrid methods, (1991), Wiley Chichester
[50] Zhang, J.; Hibler, W. D., On an efficient numerical method for modeling sea ice dynamics, J. Geophys. Res., 102, 8691-8702, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.