×

zbMATH — the first resource for mathematics

Generalized Darcy-Oseen resolvent problem. (English) Zbl 1339.35247
Summary: In this paper, we study the well-posedness of a coupled Darcy-Oseen resolvent problem, describing the fluid flow between free-fluid domains and porous media separated by a semipermeable membrane. The influence of osmotic effects, induced by the presence of a semipermeable membrane, on the flow velocity is reflected in the transmission conditions on the surface between the free-fluid domain and the porous medium. To prove the existence of a weak solution of the generalized Darcy-Oseen resolvent system, we consider two auxiliary problems: a mixed Navier-Dirichlet problem for the generalized Oseen resolvent system and Robin problem for an elliptic equation related to the general Darcy equations.
MSC:
35Q35 PDEs in connection with fluid mechanics
76S05 Flows in porous media; filtration; seepage
76D07 Stokes and related (Oseen, etc.) flows
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76Z05 Physiological flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chavarría-Krauser, Homogenization approach to water transport in plant tissues with periodic microstructures, Mathematical Modelling of Natural Phenomena 8 pp 80– (2013) · Zbl 1282.35036 · doi:10.1051/mmnp/20138406
[2] Calvez V Houot JG Meunier N Raoult A Rusnakova G Mathematical and numerical modeling of early atherosclerotic lesions ESAIM Proceedings, vol. 30 Marseille, France 2010 1 18 · Zbl 1203.92035
[3] Olgac, Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress, Am Journal Physiol Heart Circ Physiol. 294 pp H909– (2008) · doi:10.1152/ajpheart.01082.2007
[4] Prosi, Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow, Journal of Biomechanics 38 pp 903– (2005) · doi:10.1016/j.jbiomech.2004.04.024
[5] Sun, Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model, American Journal of Physiol. Heart. Circ. Physiol. 292 pp H3148– (2007) · doi:10.1152/ajpheart.01281.2006
[6] Layton, Coupling fluid flow with porous media flows, SIAM Journal on Numerical Analysis 40 pp 2195– (2003) · Zbl 1037.76014 · doi:10.1137/S0036142901392766
[7] Lipnikov, Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids, Numerische Mathematik 126 pp 321– (2014) · Zbl 1282.76139 · doi:10.1007/s00211-013-0563-3
[8] Lesinigo, A multiscale Darcy Brinkman model for fluid flow in fractured porous media, Numerische Mathematik 117 pp 717– (2011) · Zbl 1305.76109 · doi:10.1007/s00211-010-0343-2
[9] Quarteroni, Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Revista Matemťatica Complutense 22 pp 315– (2009)
[10] Medková, Integral representation of the solution to a Stokes-Darcy problem, Mathematical Methods in Applied Sciences 38 pp 3968– (2015) · Zbl 1335.35184 · doi:10.1002/mma.3330
[11] Amrouche, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Archive for Rational Mechanics and Analysis 199 pp 597– (2011) · Zbl 1229.35164 · doi:10.1007/s00205-010-0340-8
[12] Amrouche, The Oseen and Navier-Stokes equations in a non-solenoidal framework, Mathematical Methods in the Applied Sciences (2014) · Zbl 1356.35154 · doi:10.1002/mma.3337
[13] Boulmezaoud, On the steady Oseen problem in the whole space, Hiroshima Mathematical Journal 35 pp 371– (2005) · Zbl 1110.35063
[14] Deuring, Advances in Mathematical Fluid Mechanics pp 191– (2010) · Zbl 1374.35306 · doi:10.1007/978-3-642-04068-9_12
[15] Russo, A note on the existence of solutions to the Oseen system in Lipschitz domains, Journal of Mathematical Fluid Mechanics 8 pp 64– (2006) · Zbl 1099.76017 · doi:10.1007/s00021-004-0138-2
[16] Russo, On the Oseen and Navier-Stokes systems with a slip boundary condition, Applied Mathematics Letters 22 pp 674– (2009) · Zbl 1177.35157 · doi:10.1016/j.aml.2008.04.014
[17] Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Applied Scientific Research A 1 pp 27– (1947) · Zbl 0041.54204
[18] Brinkman, On the permeability of media consisting of closely packed porous particles, Applied Scientific Research A 1 pp 81– (1947)
[19] Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Mathematical Models & Methods in Applied Sciences 17 pp 215– (2007) · Zbl 1123.76066 · doi:10.1142/S0218202507001899
[20] Chen, Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system, Journal of Mathematical Analysis and Applications 368 pp 658– (2010) · Zbl 1352.35093 · doi:10.1016/j.jmaa.2010.02.022
[21] Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Communications on Pure and Applied Mathematics XLIV pp 605– (1991) · Zbl 0738.35059 · doi:10.1002/cpa.3160440602
[22] Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations I, Linearised Steady Problem (1998)
[23] Kufner, Function Spaces (1977)
[24] Medková, Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system, Acta Applicandae Mathematicae 116 pp 281– (2011) · Zbl 1235.35221 · doi:10.1007/s10440-011-9643-5
[25] Medková, Integral representation of a solution of the Neumann problem for the Stokes system, Numerical Algorithms 54 pp 459– (2010) · Zbl 1201.65214 · doi:10.1007/s11075-009-9346-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.