×

zbMATH — the first resource for mathematics

The Robin problem for the scalar Oseen equation. (English) Zbl 1277.31011
Summary: We study the Robin problem for the scalar Oseen equation in an open \(n\)-dimensional set with compact Ljapunov boundary. We prescribe two types of Robin boundary conditions, and prove the unique solvability of these problems as well as a representation formula for the solution in form of a scalar Oseen single layer potential. Moreover, we prove the maximum principle for the solution to the Robin problem of the scalar Oseen equation.
MSC:
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
35J25 Boundary value problems for second-order elliptic equations
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dautray, Mathematical Analysis and Numerical Methods for Science and Technology 1 (2000) · Zbl 0944.47002
[2] Lanzani, The Poisson’s problem for the Laplacian with Robin boundary condition in non-smooth domains, Revista Matematica Iberoamericana 22 pp 181– (2006) · Zbl 1160.35389 · doi:10.4171/RMI/453
[3] Lanzani, On the Robin boundary condition for Laplace’s equation in Lipschitz domains, Communications in PDEs 29 pp 91– (2004) · Zbl 1140.35402 · doi:10.1081/PDE-120028845
[4] Medková, The third boundary value problem in potential theory for domains with a piecewise smooth boundary, Czechoslovak Mathematical Journal 47 pp 651– (1997) · Zbl 0978.31003 · doi:10.1023/A:1022818618177
[5] Medková, Solution of the Robin problem for the Laplace equation, Applications of Mathematics 43 pp 133– (1998) · Zbl 0938.31005 · doi:10.1023/A:1023267018214
[6] Netuka, The third boundary value problem in potential theory, Czechoslovak Mathematical Journal 22 pp 554– (1972) · Zbl 0242.31007
[7] Netuka, Generalized Robin problem in potential theory, Czechoslovak Mathematical Journal 22 pp 312– (1972) · Zbl 0241.31008
[8] Medková, The boundary value problems for the scalar Oseen equation, Mathematische Nachrichten 285 pp 2208– (2012) · Zbl 1257.31006 · doi:10.1002/mana.201100219
[9] Skopin J Zur Potentialtheorie der skalaren Oseen-Gleichung in R 3 PhD Thesis 2002
[10] Gilbarg, Elliptic Partial Differential Equations of Second Order (2001)
[11] Vladimirov, Equations of Mathematical Physics (1971)
[12] Hackbusch, Integral Equations. Theory and Numerical Treatment (1995)
[13] Kračmar, A maximum modulus theorem for the Oseen problem, Annali Di Matematica Pura Ed Applicata
[14] Maz’ya, Encyclopaedia of Mathematical Sciences 27 pp 127– (1991)
[15] Král, Integral Operators in Potential Theory 823 (1980) · doi:10.1007/BFb0091035
[16] Sobolev, Partial Differential Equations of Mathematical Physics (1964)
[17] Verchota, Layer potentials and regularity for Dirichlet problem for Laplace’s equation in Lipschitz domains, Journal of Functional Analysis 59 pp 572– (1984) · Zbl 0589.31005 · doi:10.1016/0022-1236(84)90066-1
[18] Goldberg, Unbounded Linear Operators. Theory and Applications (1966) · Zbl 0148.12501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.