zbMATH — the first resource for mathematics

Finiteness and recognizability problems for substitution maps on two symbols. (English) Zbl 1202.37014
Authors’ abstract: We investigate minimal, compact, square-closed subsets of the unit circle by identifying them with subsets of [0,1] and with sets of infinite words on two symbols; in particular, such sets arising from substitution maps. We consider problems on finiteness, recognizability, square roots, density and measure. Properties of the free semigroup on two symbols play a significant role in the analysis.

37B10 Symbolic dynamics
Full Text: DOI
[1] Blum, E.K.: A note on free subsemigroups with two generators. Bull. Am. Math. Soc. 71, 678–679 (1965) · Zbl 0131.02004 · doi:10.1090/S0002-9904-1965-11395-7
[2] Bullett, S., Sentenac, P.: Ordered orbits of the shift, square roots, and the devil’s staircase. Math. Proc. Camb. Philos. Soc. 115(3), 451–481 (1994) · Zbl 0823.58012 · doi:10.1017/S0305004100072236
[3] Crabb, M.J., Duncan, J., McGregor, C.M.: On one-sided primitivity of Banach algebras. Proc. Edinb. Math. Soc. (2) 53(1), 111–123 (2010) · Zbl 1195.46047 · doi:10.1017/S0013091508000783
[4] Fogg, N.P.: Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics, vol. 1794. Springer, Berlin (2002) · Zbl 1014.11015
[5] Host, B.: Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergod. Theory Dyn. Syst. 6, 529–540 (1986) · Zbl 0625.28011 · doi:10.1017/S0143385700003679
[6] Martin, J.C.: Minimal flows arising from substitutions of non constant length. Math. Syst. Theory 7, 73–82 (1971) · Zbl 0256.54026 · doi:10.1007/BF01824809
[7] Milnor, J.: Dynamics in One Complex Variable. Vieweg, Braunschweig (2000) · Zbl 0972.30014
[8] Mossé, B.: Puissance de mots et reconnaissabilité des points fixes d’une substitution. Theor. Comput. Sci. 99, 327–334 (1992) · Zbl 0763.68049 · doi:10.1016/0304-3975(92)90357-L
[9] Queffélec, M.: Substitution Dynamical Systems–Spectral Analysis. Lecture Notes in Mathematics, vol. 1294. Springer, Berlin (1987) · Zbl 0642.28013
[10] Veerman, J.J.P.: Symbolic dynamics and rotation numbers. Physica A 134, 543–576 (1986) · Zbl 0655.58019 · doi:10.1016/0378-4371(86)90015-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.