Lahrech, S.; Jaddar, A.; Hlal, J.; Ouahab, A.; Mbarki, A. Banach-Steinhaus type theorem in locally convex spaces for \(\sigma\)-locally Lipschitzian convex processes. (English) Zbl 1324.49013 Vladikavkaz. Mat. Zh. 10, No. 2, 32-35 (2008). MSC: 49J52 49J50 47B37 46A45 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Vladikavkaz. Mat. Zh. 10, No. 2, 32--35 (2008; Zbl 1324.49013) Full Text: MNR
Lahrech, S.; Jaddar, A.; Hlal, J.; Ouahab, A.; Mbarki, A. On the principle of uniform boundedness for LSC convex processes in strictly \({\mathcal N}\) locally convex spaces. (English) Zbl 1152.49015 Demonstr. Math. 41, No. 1, 160-163 (2008). MSC: 49J52 49J50 47B37 46A45 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Demonstr. Math. 41, No. 1, 160--163 (2008; Zbl 1152.49015)
Lahrech, S.; Hlal, J.; Ouahab, A.; Jaddar, A.; Mbarki, A. Banach-Steinhaus type theorems in locally convex spaces for LSC convex processes. (English) Zbl 1152.49014 Int. J. Contemp. Math. Sci. 2, No. 21-24, 1183-1187 (2007). MSC: 49J52 49J50 47B37 46A45 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Int. J. Contemp. Math. Sci. 2, No. 21--24, 1183--1187 (2007; Zbl 1152.49014) Full Text: DOI
Lahrech, S.; Hlal, J.; Ouahab, A.; Jaddar, A.; Mbarki, A. On nonconvex subdifferential calculus in binormed spaces. (English) Zbl 1141.49018 Int. Math. Forum 2, No. 53-56, 2723-2731 (2007). MSC: 49J52 49J50 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Int. Math. Forum 2, No. 53--56, 2723--2731 (2007; Zbl 1141.49018) Full Text: DOI
Lahrech, S.; Hlal, J.; Ouahab, A.; Jaddar, A.; Mbarki, A. On the principle of uniform boundedness for LSC convex processes in Banach spaces. (English) Zbl 1141.49017 Int. Math. Forum 2, No. 53-56, 2719-2722 (2007). MSC: 49J52 49J50 49J45 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Int. Math. Forum 2, No. 53--56, 2719--2722 (2007; Zbl 1141.49017) Full Text: DOI
Lahrech, S.; Hlal, J.; Ouahab, A.; Jaddar, A.; Mbarki, A. Characterization of the extrema of a pseudoconvex function in terms of limiting and strong limiting subdifferential. (English) Zbl 1141.49025 Int. Math. Forum 2, No. 53-56, 2711-2718 (2007). MSC: 49K27 49J52 49J50 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Int. Math. Forum 2, No. 53--56, 2711--2718 (2007; Zbl 1141.49025) Full Text: DOI
Lahrech, S.; Jaddar, A.; Hlal, J.; Ouahab, A.; Mbarki, A. A note on the weakly quasi-convex functions. (English) Zbl 1125.49011 Int. Math. Forum 2, No. 33-36, 1755-1761 (2007). MSC: 49J52 49J50 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Int. Math. Forum 2, No. 33--36, 1755--1761 (2007; Zbl 1125.49011) Full Text: DOI
Lahrech, S.; Benbrik, A.; Jaddar, A.; Ouahab, A.; Mbarki, A. Fuzzy calculus for strong limiting subdifferential in Banach spaces. (English) Zbl 1125.49010 Int. J. Math. Anal., Ruse 1, No. 9-12, 443-450 (2007). MSC: 49J52 49J50 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Int. J. Math. Anal., Ruse 1, No. 9--12, 443--450 (2007; Zbl 1125.49010)
Lahrech, S.; Jaddar, A.; Hlal, J.; Ouahab, A.; Mbarki, A. Banach–Steinhaus type theorems in locally convex spaces for bounded convex processes. (English) Zbl 1128.47311 Int. J. Math. Anal., Ruse 1, No. 9-12, 437-441 (2007). MSC: 47B37 49J52 49J50 46A45 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Int. J. Math. Anal., Ruse 1, No. 9--12, 437--441 (2007; Zbl 1128.47311)
Lahrech, S.; Jaddar, A.; Ouahab, a.; Mbarki, A. Characterization of \(\alpha\)-convex functions via weakly \(\alpha\)-monotone bifunctions. (English) Zbl 1132.49009 Appl. Math. Sci., Ruse 1, No. 25-28, 1241-1248 (2007). MSC: 49J52 49J50 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Appl. Math. Sci., Ruse 1, No. 25--28, 1241--1248 (2007; Zbl 1132.49009)
Lahrech, Samir; Jaddar, Abdessamad; Ouahab, Abdelmalek; Mbarki, Abderrahim Some remarks about strictly pseudoconvex functions with respect to the Clarke-Rockafellar subdifferential. (English) Zbl 1121.49018 Lobachevskii J. Math. 24, 55-62 (2006). Reviewer: Themistocles M. Rassias (Athens) MSC: 49J52 49J50 PDF BibTeX XML Cite \textit{S. Lahrech} et al., Lobachevskii J. Math. 24, 55--62 (2006; Zbl 1121.49018) Full Text: EMIS EuDML
Benbrik, A.; Mbarki, A.; Lahrech, S.; Ouahab, A. Ekeland’s principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics. (English) Zbl 1121.58018 Lobachevskii J. Math. 21, 33-44 (2006). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 58E30 49J40 49J52 54E15 PDF BibTeX XML Cite \textit{A. Benbrik} et al., Lobachevskii J. Math. 21, 33--44 (2006; Zbl 1121.58018) Full Text: EMIS EuDML