×

zbMATH — the first resource for mathematics

Molecular dynamics simulation of temperature and pressure effects on the intermediate length scale dynamics and zero shear rate viscosity of cis-1,4-polybutadiene: Rouse mode analysis and dynamic structure factor spectra. (English) Zbl 1388.76314
Summary: A well-relaxed atomistic configuration of a 32-chain C\(_{128} \)cis-1,4-polybutadiene (cis-1,4-PB) system has been subjected to long (on the order of a few microseconds) molecular dynamics (MD) simulations in the NPT ensemble using the united-atom forcefield introduced by G. D. Smith et al. [“A molecular dynamics simulation study of the {\(\alpha\)}-relaxation in a 1,4-polybutadiene melt as probed by the coherent dynamic structure factor”, J. Chem. Phys. 121, No. 10, 4961–4967 (2004; doi:10.1063/1.1781114)] on the basis of quantum chemistry calculations. This allowed us to study the temperature and pressure dependences of the Rouse-mode relaxation spectrum of cis-1,4-PB over a wide range of temperature (ranging from \(T = 430\) K down to 165 K) and pressure (from \(P = 1\) atm up to 3.5 kbar) conditions. Results are presented for: (a) the time decay of the autocorrelation function of the normal coordinates (Rouse modes), (b) the single chain intermediate coherent dynamic structure factor, \(S_{\text{coh}}(q, t)\), and (c) the intermediate incoherent dynamic structure factor, \(S_{\text{inc}}(q, t)\), for different values of the wavevector \(q\). By mapping our MD simulation results onto the Rouse model, we have been able to extract a prediction for the zero shear rate viscosity of the simulated cis-1,4-PB system as a function of temperature and analyze its fragile character. In agreement with our previous MD simulation studies on the same system [the first author et al., “Atomistic molecular dynamics simulation of the temperature and pressure dependences of local and terminal relaxations in cis-1,4-polybutadiene”, ibid. 124, No. 8, Article ID 084906 (2006; doi:10.1063/1.2174003)] and in contrast to what is experimentally observed (see, e.g., [G. Floudas and T. Reisinger, “Pressure dependence of the local and global dynamics of polyisoprene”, ibid. 111, No. 11, 5201–5204 (1999; doi:10.1063/1.479774); C. M. Roland et al.., “Segmental- and normal-mode dielectric relaxation of poly(propylene glycol) under pressure”, J. Polym. Sci. Part B: Polym. Phys. 41, No. 23, 3047–3052 (2003; doi:10.1002/polb.10634)]), we predict that pressure and temperature influence practically similarly all normal mode relaxation times along the simulated C\(_{128}\) cis-1,4-PB chain. Furthermore, our MD simulation results predict a transition from a homogeneous to a heterogeneous dynamical behavior in the region of wavevectors near the first (intermolecular) peak in the static structure factor, consistently with recent neutron scattering (NS) measurements (see, e.g., [B. Frick et al., “Pressure dependence of the segmental relaxation of polybutadiene and polyisobutylene and influence of molecular weight”, Chem. Phys. 292, No. 2-3, 311–323 (2003; doi:10.1016/s0301-0104(03)00236-2); A. Arbe et al., “Intermediate length scale dynamics in glass forming polymers: coherent and incoherent quasielastic neutron scattering results on polyisobutylene”, ibid. 292, No. 2-3, 295–309 (2003; doi:10.1016/s0301-0104(03)00095-8)]) and previous simulation studies (see, e.g., [J. Colmenero et al., “Self-motion and the {\(\alpha\)} relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior”, Phys. Rev. E (3) 65, No. 4, Article ID 041804, 12 p. (2002; doi:10.1103/physreve.65.041804)]).
MSC:
76M28 Particle methods and lattice-gas methods
76A10 Viscoelastic fluids
PDF BibTeX Cite
Full Text: DOI
References:
[1] Frick, B.; Alba-Simionesco, C.: Comparison of the pressure and temperature dependence of the elastic incoherent scattering for the polymers polybutadiene and polyisobutylene, Phys. B: condens. Matter 266, 13-19 (1999)
[2] Frick, B.; Albasimionesco, C.; Hendricks, J.; Willner, L.: Incoherent inelastic neutron scattering on polybutadiene under pressure, Prog. theor. Phys. suppl. 126, 213-218 (1997)
[3] B. Frick, C. Alba-Simionesco, K.H. Andersen, L. Willner, Influence of density and temperature on the microscopic structure and the segmental relaxation of polybutadiene, Phys. Rev. E 67 (2003) 051801-1-15.
[4] Frick, B.; Dosseh, G.; Cailliaux, A.; Alba-Simionesco, C.: Pressure dependence of the segmental relaxation of polybutadiene and polyisobutylene and influence of molecular weight, Chem. phys. 292, 311-323 (2003)
[5] Richter, D.; Frick, B.; Farago, B.: Neutron-spin-echo investigation on the dynamics of polybutadiene near the Glass-transition, Phys. rev. Lett. 61, 2465-2468 (1988)
[6] Arbe, A.; Colmenero, J.; Farago, B.; Monkenbusch, M.; Buchenau, U.; Richter, D.: Intermediate length scale dynamics in Glass forming polymers: coherent and incoherent quasielastic neutron scattering results on polyisobutylene, Chem. phys. 292, 295-309 (2003)
[7] Floudas, G.; Gravalides, C.; Reisinger, T.; Wegner, G.: Effect of pressure on the segmental and chain dynamics of polyisoprene. Molecular weight dependence, J. chem. Phys. 111, 9847-9852 (1999)
[8] Mierzwa, M.; Floudas, G.; Dorgan, J.; Knauss, D.; Wegner, J.: Local and global dynamics of polylactides. A dielectric spectroscopy study, J. non-cryst. Solids 307, 296-303 (2002)
[9] Paluch, M.; Pawlus, S.; Roland, C. M.: Pressure and temperature dependence of the alpha-relaxation in \(poly(methyltolylsiloxane)\), Macromolecules 35, 7338-7342 (2002)
[10] Roland, C. M.; Casalini, R.; Psurek, T.; Pawlus, S.; Paluch, M.: Segmental- and normal-mode dielectric relaxation of \(poly(propylene glycol)\) under pressure, J. polym. Sci. part B: polym. Phys. 41, 3047-3052 (2003)
[11] Santangelo, P. G.; Roland, C. M.: Temperature dependence of mechanical and dielectric relaxation in cis-1,4-polyisoprene, Macromolecules 31, 3715-3719 (1998)
[12] Ding, Y. F.; Sokolov, A. P.: Breakdown of time-temperature superposition principle and universality of chain dynamics in polymers, Macromolecules 39, 3322-3326 (2006)
[13] G. Floudas, K. Mpoukouvalas, P. Papadopoulos, The role of temperature and density on the glass-transition dynamics of glass formers, J. Chem. Phys. 124 (2006) 074905-1-5.
[14] Plazek, D. J.; Zheng, X. D.; Ngai, K. L.: Viscoelastic properties of amorphous polymers. 1. Different temperature dependences of segmental relaxation and terminal dispersion, Macromolecules 25, 4920-4924 (1992)
[15] Plazek, D. J.; Schlosser, E.; Schonhals, A.; Ngai, K. L.: Breakdown of the rouse model for polymers near the Glass-transition temperature, J. chem. Phys. 98, 6488-6491 (1993)
[16] Kirpatch, A.; Adolf, D. B.: High-pressure study of the local dynamics of melt cis-1,4-polybutadiene and cis-1,4-polyisoprene, Macromolecules 37, 1576-1582 (2004)
[17] Punchard, B. J.; Adolf, D. B.: Pressure and temperature dependence of the melt segmental dynamics of cis-1,4-polyisoprene via time resolved optical spectroscopy, J. chem. Phys. 117, 7774-7780 (2002)
[18] G. Tsolou, V.A. Harmandaris, V.G. Mavrantzas, Atomistic molecular dynamics simulation of the temperature and pressure dependences of local and terminal relaxations in cis-1,4-polybutadiene, J. Chem. Phys. 124 (2006) 084906-1-11.
[19] Tsolou, G.; Harmandaris, V. A.; Mavrantzas, V. G.: Temperature and pressure effects on local structure and chain packing in cis-1,4-polybutadiene from detailed molecular dynamics simulations, Macromol. theor. Simul. 15, 381-393 (2006)
[20] Doxastakis, M.; Theodorou, D. N.; Fytas, G.; Kremer, F.; Faller, R.; Muller-Plathe, F.; Hadjichristidis, N.: Chain and local dynamics of polyisoprene as probed by experiments and computer simulations, J. chem. Phys. 119, 6883-6894 (2003)
[21] Smith, G.; Bedrov, D.; Paul, W.: A molecular dynamics simulation study of the alpha-relaxation in a 1,4-polybutadiene melt as probed by the coherent dynamic structure factor, J. chem. Phys. 121, 4961-4967 (2004)
[22] Ngai, K. L.; Schonhals, A.; Schlosser, E.: An explanation of anomalous dielectric-relaxation properties of \(poly(propylene glycol)\), Macromolecules 25, 4915-4919 (1992)
[23] Ngai, K. L.; Plazek, D. J.; Deo, S. S.: Physical origin of the anomalous temperature-dependence of the steady-state compliance of low-molecular weight polystyrene, Macromolecules 20, 3047-3054 (1987)
[24] P. Papadopoulos, G. Floudas, I. Schnell, H.A. Klok, T. Aliferis, H. Iatrou, N. Hadjichristidis, ”Glass transition” in peptides: temperature and pressure effects, J. Chem. Phys. 122 (2005) 224906-1-4.
[25] K. Mpoukouvalas, G. Floudas, Phase diagram of poly(methyl-p-tolyl-siloxane): a temperature- and pressure-dependent dielectric spectroscopy investigation, Phys. Rev. E 68 (2003) 031801-1-8.
[26] Casalini, R.; Roland, C. M.: Temperature and density effects on the local segmental and global chain dynamics of \(poly(oxybutylene)\), Macromolecules 38, 1779-1788 (2005)
[27] Nicolai, T.; Floudas, G.: Dynamics of linear and star \(poly(oxypropylene)\) studied by dielectric spectroscopy and rheology, Macromolecules 31, 2578-2585 (1998)
[28] Roland, C. M.; Casalini, R.: Temperature and volume effects on local segmental relaxation in \(poly(vinyl acetate)\), Macromolecules 36, 1361-1367 (2003)
[29] Adachi, K.; Hirano, H.: Slow dielectric relaxation of cis-polyisoprene near the Glass transition temperature, Macromolecules 31, 3958-3962 (1998)
[30] Floudas, G.; Reisinger, T.: Pressure dependence of the local and global dynamics of polyisoprene, J. chem. Phys. 111, 5201-5204 (1999)
[31] Schönhals, A.: Relation between Main and normal mode relaxations for polyisoprene studied by dielectric-spectroscopy, Macromolecules 26, 1309-1312 (1993)
[32] Doi, M.; Edwards, S. F.: The theory of polymer dynamics, (1986)
[33] Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N.; Kröger, M.; Ramirez, J.; Öttinger, H. C.; Vlassopoulos, D.: Crossover from the rouse to the entangled polymer melt regime: signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments, Macromolecules 36, 1376-1387 (2003)
[34] Tsolou, G.; Mavrantzas, V. G.; Theodorou, D. N.: Detailed atomistic molecular dynamics simulation of cis-1,\(4-poly(butadiene)\), Macromolecules 38, 1478-1492 (2005)
[35] Baumgärtner, A.; Ebert, U.; Schäfer, L.: The coherent scattering function of the reptation model: simulation compared to theory, Eur. phys. J. E 12, 303-319 (2003)
[36] Ganazzoli, F.; Raffaini, G.; Arrighi, V.: The stretched-exponential approximation to the dynamic structure factor in non-entangled polymer melts, Phys. chem. Chem. phys. 4, 3734-3742 (2002)
[37] Higgins, J.; Benoit, H. C.: Polymers and neutron scattering, (1996)
[38] Colmenero, J.; Arbe, A.; Alegria, A.; Monkenbusch, M.; Richter, D. D.: On the origin of the non-exponential behaviour of the alpha-relaxation in Glass-forming polymers: incoherent neutron scattering and dielectric relaxation results, J. phys.: condens. Matter 11, A363-A370 (1999)
[39] Arbe, A.; Colmenero, J.; Alvarez, F.; Monkenbusch, M.; Richter, D.; Farago, B.; Frick, B.: Non-Gaussian nature of the alpha relaxation of Glass-forming polyisoprene, Phys. rev. Lett. 89 (2002)
[40] Arbe, A.; Colmenero, J.; Alvarez, F.; Monkenbusch, M.; Richter, D.; Farago, B.; Frick, B.: Experimental evidence by neutron scattering of a crossover from Gaussian to non-Gaussian behavior in the alpha relaxation of polyisoprene, Phys. rev. E 67 (2003)
[41] Farago, B.; Arbe, A.; Colmenero, J.; Faust, R.; Buchenau, U.; Richter, D.: Intermediate length scale dynamics of polyisobutylene, Phys. rev. E 65 (2002)
[42] Richter, D.; Monkenbusch, M.; Arbe, A.; Colmenero, J.; Farago, B.; Faust, R.: Space time observation of the alpha-process in polymers by quasielastic neutron scattering, J. phys.: condens. Matter 11, A297-A306 (1999)
[43] Sillescu, H.: Heterogeneity at the Glass transition: a review, J. non-cryst. Solids 243, 81-108 (1999)
[44] Arbe, A.; Colmenero, J.; Monkenbusch, M.; Richter, D.: Dynamics of Glass-forming polymers: ”homogeneous” versus ”heterogeneous” scenario, Phys. rev. Lett. 81, 590-593 (1998)
[45] Smith, G. D.; Borodin, O.; Bedrov, D.; Paul, W.; Qiu, X. H.; Ediger, M. D.: C-13 NMR spin-lattice relaxation and conformational dynamics in a 1,4-polybutadiene melt, Macromolecules 34, 5192-5199 (2001)
[46] Papadopoulos, P.; Peristeraki, D.; Floudas, G.; Koutalas, G.; Hadjichristidis, N.: Origin of Glass transition of \(poly(2-vinylpyridine)\). A temperature- and pressure-dependent dielectric spectroscopy study, Macromolecules 37, 8116-8122 (2004)
[47] Richter, D.; Monkenbusch, M.; Allgeier, J.; Arbe, A.; Colmenero, J.; Farago, B.; Bae, Y. C.; Faust, R.: From rouse dynamics to local relaxation: a neutron spin echo study on polyisobutylene melts, J. chem. Phys. 111, 6107-6120 (1999)
[48] Neelakantan, A.; Maranas, J. K.: Spatial regimes in the dynamics of polyolefins: self-motion, J. chem. Phys. 120, 465-474 (2004)
[49] Arialdi, G.; Karatasos, K.; Rychaert, J. P.; Arrighi, V.; Saggio, F.; Triolo, A.; Desmedt, A.; Pieper, J.; Lechner, R. E.: Local dynamics of polyethylene and its oligomers: a molecular dynamics interpretation of the incoherent dynamic structure factor, Macromolecules 36, 8864-8875 (2003)
[50] Angell, C. A.; Ngai, K. L.; Mcmillan, P. F.; Martin, S. W.: Relaxation in glassforming liquids and amorphous solids, J. app. Phys. 88, 3113-3157 (2000)
[51] Debenedetti, P. G.; Stillinger, F. H.: Supercooled liquids and the Glass transition, Nature 410, 259-267 (2001)
[52] Van Krevelen, W. D.: Properties of polymers: their estimation and correlation with chemical structure, (1990)
[53] Ferry, J. D.: Viscoelastic properties of polymers, (1980)
[54] Böhmer, R.; Ngai, K. L.; Angell, C. A.; Plazek, D. J.: Nonexponential relaxations in strong and fragile Glass formers, J. chem. Phys. 99, 4201-4209 (1993)
[55] Roland, C. M.; Ngai, K. L.: Segmantal relaxation and molecular structure in polybutadienes and polyisoprene, Macromolecules 24, 5315-5319 (1991)
[56] Colmenero, J.; Alvarez, F.; Arbe, A.: Self-motion and the alpha relaxation in a simulated Glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior, Phys. rev. E 65 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.