×

zbMATH — the first resource for mathematics

Pseudospectral calculations of stress-induced concentration changes in viscometric flows of polymer solutions. (English) Zbl 0783.76077
We investigate the flow of dilute polymer solutions in viscometric devices where the polymer concentration is allowed to vary due to the existence of nonzero stress gradients. A spectral collocation method is used in order to solve for the axisymmetric steady-state solution of the full set of the governing equations. Two alternative continuum formulations are considered based on a single- and two-fluid concept, respectively.
MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76A05 Non-Newtonian fluids
76A10 Viscoelastic fluids
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Aubert, J.H., and Tirrell, M. (1980). Macromolecules in nonhomogeneous velocity gradient fields. J Chem Phys., 72, 2694-2701.
[2] Aubert, J.H., and Tirrell, M. (1982). Effective viscosity of dilute polymer solutions near confining boundaries. J. Chem. Phys., 77, 553-561.
[3] Aubert, J.H., Prager, S., and Tirrell, M. (1980). Macromolecules in nonhomogeneous velocity gradient fields, II. J. Chem. Phys., 73, 4103-4112.
[4] Avgousti, M., Liu, B., and Beris, A.N. (1993). Viscoelastic Taylor-Couette flow. Internat. J. Numer. Methods Fluids, 17, 49-74. · Zbl 0785.76054
[5] Beris, A.N., and Edwards, B.J. (1990). Poisson bracket formulation of viscoelastic flow equations of differential type: A unified approach. J. Rheol., 34, 503-538. · Zbl 0697.76015
[6] Beris, A.N., and Edwards, B.J. (1993). Thermodynamics of Flowing Systems Oxford University Press, New York.
[7] Beris, A.N., Armstrong, R.C., and Brown, R.A. (1987). Spectral/finite element calculations of the flow of a Maxwell fluid between eccentric rotating cylinders. J. Non-Newtonian Fluid Mech., 22, 129-167. · Zbl 0609.76010
[8] Bhave, A.V., Armstrong, R.C., and Brown, R.A. (1991). Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions. J. Chem. Phys., 95, 2988-3000.
[9] Bird, R.B., Armstrong, R.C., and Hassager, O. (1987). Dynamics of Polymeric Fluids, Vol. 1, 2nd edn. Wiley, New York.
[10] Brunn, P.O. (1984). Nonuniform concentration profiles of dilute macromolecular solutions in rotational viscometric flows. J. Chem. Phys., 80, 3420-3426.
[11] Brunn, P.O. (1985). Wall effects for dilute polymer solutions in arbitrary unidirectional flows. J. Rheol., 29, 859-886. · Zbl 0628.76003
[12] Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A. (1987). Spectral Methods in Fluid Mechanics Springer-Verlag, New York.
[13] Crewther, I., and Huilgol, R.R. (1988). Axisymmetric and non-axisymmetric bifurcations in the two disk problem for viscoelastic fluids. In: Proceedings of the Xth International Congress on Rheology, vol. 1, Uhlherr, P.H.T. (ed.), pp. 285-287.
[14] Crewther, I., Huilgol, R.R., and Jozsa, R. (1991). Axisymmetric and non-axisymmetric flows of a non-Newtonian fluid between coaxial rotating disks. Philos. Trans. Roy. Soc. London. Ser. A, 337, 467-495. · Zbl 0748.76018
[15] Davies, A.R., Karageorghis, A., and Phillips, T.N. (1988). Spectral Galerkin methods for the primary two-point boundary value problem in modelling viscoelastic flows. Internat. J. Numer. Methods Engrg., 26, 647-662. · Zbl 0635.73091
[16] Dill, K.A., and Zimm, B.H. (1979). A rheological separator for very large DNA molecules. Nucleic Acids Res., 7, 735-749.
[17] Doi, M. (1990). Effects of viscoelasticity on polymer diffusion. In: Dynamics and Patterns in Complex Fluids: New Aspects of Physics and Chemistry of Interfaces, Onuki, A., and Kawasaki, K. (eds.), Springer-Verlag, New York, pp. 100-112.
[18] Fischer, P.F., Ho, L., Karniadakis, G.E., Ronquist, E.M., and Patera, A.T. (1988). Recent advances in parallel spectral element simulation of unsteady incompressible flows. Comput. & Structures, 30, 217-231. · Zbl 0668.76039
[19] Gottlieb, D., and Orszag, S.A. (1977). Numerical Analysis of Spectral Methods: Theory and Applications SIAM-CBMS, Philadelphia, PA. · Zbl 0412.65058
[20] Gottlieb, D., Hussaini, M.Y., and Orszag, S.A. (1984). Theory and application of spectral methods. In: Spectral Methods for Partial Differential Equations, Voight, R.G., Gottlieb, D., and Hussaini, M.Y. (eds.). SIAM, Philadelphia, PA. · Zbl 0599.65079
[21] Harriott, G.M., and Brown, R.A. (1983). Flow in a differentially rotated cylindrical drop at low Reynolds number. J. Fluid Mech., 126, 269-285. · Zbl 0515.76113
[22] Helfand, E., and Fredrickson, G.H. (1989). Large fluctuations in polymer solutions under shear. Phys. Rev. Lett., 62, 2468-2471.
[23] Huilgol, R.R., and Keller, H.B. (1985). Flow of viscoelastic fluids between rotating disks: Part I. J. Non-Newtonian Fluid Mech., 18, 101-110. · Zbl 0592.76015
[24] Huilgol, R.R., and Rajagopal, K.R. (1987). Non-axisymmetric flow of a viscoelastic fluid between rotating disks. J. Non-Newtonian Fluid Mech., 23, 423-434. · Zbl 0616.76012
[25] Karniadakis, G.E. (1989). Spectral element simulations of laminar and turbulent flows in complex geometries. Appl. Numer. Methods, 6, 85-105. · Zbl 0678.76050
[26] Kopriva, D.A. (1986). A spectral multidomain method for the solution of hyperbolic systems. Appl. Numer. Methods, 2, 221-241. · Zbl 0601.76087
[27] Korczak, K.Z., and Patera, A.T. (1986). An isoparametric spectral element method for solution of Navier Stokes equations in complex geometries. J. Comput. Phys., 62, 361-382. · Zbl 0581.76036
[28] Mavrantzas, V.G., and Beris, A.N. (1992a). Modelling the rheology and flow-induced concentration changes in polymer solutions. Phys. Rev. Lett., 69, 273-276, and (1993) Errata. Phys. Rev. Lett., 70, 2659. · Zbl 0968.82517
[29] Mavrantzas, V.G., and Beris, A.N. (1992b). Theoretical study of wall effects on the rheology of dilute polymer solutions. J. Rheol., 36, 175-213.
[30] McKinley, G.H., Byars, J.A., Brown, R.A., and Armstrong, R.C. (1991). Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid. J. Rheol., 40, 201-229. · Zbl 0731.76005
[31] Milner, S.T. (1991). Hydrodynamics of semidilute polymer solutions. Phys. Rev. Lett., 66, 1477-1480.
[32] Onuki, A. (1990). Dynamic equations of polymers with deformations in semidilute regions. J. Phys. Soc. Japan, 59, 3423-3426.
[33] Orszag, S.A. (1980). Spectral methods for problems in complex geometries. J. Comput. Phys., 37, 70-92. · Zbl 0476.65078
[34] Phan-Thien, N. (1983a). Coaxial disk flow and flow about a rotating disk of a Maxwellian fluid. J. Fluid Mech., 128, 427-442. · Zbl 0516.76010
[35] Phan-Thien, N. (1983b). Coaxial disk flow of an Oldroyd-B fluid, exact solution and stability. J. Non-Newtonian Fluid Mech., 13, 325-340. · Zbl 0567.76013
[36] Phan-Thien, N. (1985). Cone-and-plate flow of the Oldroyd-B fluid is unstable. J. Non-Newtonian Fluid Mech., 17, 37-44. · Zbl 0554.76009
[37] Pilitsis, S., and Beris, A.N. (1989). Calculations of steady-state viscoelastic flow in an undulating tube. J. Non-Newtonian Fluid Mech., 31, 231-287. · Zbl 0667.76019
[38] Pilitsis, S., and Beris, A.N. (1992). Pseudospectral calculations of viscoelastic flow in a periodically constricted tube. Comput. Methods Appl. Mech. Engrg., 98, 307-328. · Zbl 0825.76612
[39] Quinzani, L.M., McKinley, G.H., Brown, R.A., and Armstrong, R.C. (1990). Modeling the rheology of polyisobutylene solutions. J. Rheol., 34, 705-748.
[40] Rajagopal, K.R. (1992). Flow of viscoelastic fluids between rotating disks. Theoret. Comput. Fluid Dynamics, 3, 185-206. · Zbl 0747.76018
[41] Rajagopal, K.R., and Szeri, A.Z. (1990). Multiplicity of solutions in von-Kármán flows of viscoelastic fluids. J. Non-Newtonian Fluid Mech., 36, 1-25. · Zbl 0708.76009
[42] Rangel-Nafaile, R., Metzner, A.B., and Wissbrun, K.F. (1984). Analysis of stress-induced phase separations in solutions. Macromolecules, 17, 1187-1195.
[43] Shafer, R.M., Laiken, N., and Zimm, B.H. (1974). Radial migration of DNA molecules in cylindrical flow. I. Theory of the free-draining model. Biophys. Chem., 2, 180-184.
[44] Souvaliotis, A., and Beris, A.N. (1992). Applications of domain decomposition spectral collocation methods in viscoelastic flows through model porous media. J. Rheol., 36, 1417-1453.
[45] Talwar, K.K., and Khomami, B. (1992). Application of higher order finite element methods to viscoelastic flow in porous media. J. Rheol., 36, 1377-1416.
[46] Tanner, R.I. (1985). Engineering Rheology Oxford University Press, Oxford.
[47] Voigt, R.G., Gottlieb, D., and Hussaini, M.Y. (eds.) (1984). Spectral Methods for Partial Differential Equations SIAM-CBMS, Philadelphia, PA. · Zbl 0534.00017
[48] von Kármán, T. (1921). Über laminare und turbulente Reibung. Z. Angew. Math. Mech., 1, 232-252. · JFM 48.0968.01
[49] Walsh, W.P. (1987). On the flow of a non-Newtonian fluid between rotating, coaxial discs. J. Appl. Math. Phys. (ZAMP), 38, 495-512. · Zbl 0619.76001
[50] Wu, X.L., Pine, D.J., and Dixon, P.K. (1991). Enhanced concentration fluctuations in polymer solutions under shear flow. Phys. Rev. Lett., 66, 2408-2411.
[51] Yamakawa, H. (1971). Modern Theory of Polymer Solutions Harper & Row, New York.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.