×

Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames. (English) Zbl 1248.76148

Summary: Numerical simulations with single-step chemistry and detailed transport are used to study premixed hydrogen/air flames in two-dimensional channel-like domains with periodic boundary conditions along the horizontal boundaries as a function of the domain height. Both unity Lewis number, where only hydrodynamic instability appears, and subunity Lewis number, where the flame propagation is strongly affected by the combined effect of hydrodynamic and thermodiffusive instabilities are considered. The simulations aim at studying the initial linear growth of perturbations superimposed on the planar flame front as well as the long-term nonlinear evolution. The dispersion relation between the growth rate and the wavelength of the perturbation characterizing the linear regime is extracted from the simulations and compared with linear stability theory. The dynamics observed during the nonlinear evolution depend strongly on the domain size and on the Lewis number. As predicted by the theory, unity Lewis number flames are found to form a single cusp structure which propagates unchanged with constant speed. The long-term dynamics of the subunity Lewis number flames include steady cell propagation, lateral flame movement, oscillations and regular as well as chaotic cell splitting and merging.

MSC:

76V05 Reaction effects in flows
76R50 Diffusion
76E99 Hydrodynamic stability
80A25 Combustion
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1017/S0022112092003124 · doi:10.1017/S0022112092003124
[2] DOI: 10.1016/S0370-1573(99)00081-2 · doi:10.1016/S0370-1573(99)00081-2
[3] DOI: 10.1016/0010-2180(82)90115-8 · doi:10.1016/0010-2180(82)90115-8
[4] DOI: 10.1088/1364-7830/7/1/303 · Zbl 1068.76521 · doi:10.1088/1364-7830/7/1/303
[5] DOI: 10.1016/j.proci.2008.06.075 · doi:10.1016/j.proci.2008.06.075
[6] DOI: 10.1080/00102208208923598 · doi:10.1080/00102208208923598
[7] Rehm, J. Res. Natl Bur. Stand. 83 pp 97– (1978) · Zbl 0433.76072 · doi:10.6028/jres.083.019
[8] DOI: 10.1080/13647830500463502 · Zbl 1115.80315 · doi:10.1080/13647830500463502
[9] DOI: 10.1017/CBO9780511546792 · Zbl 1007.76001 · doi:10.1017/CBO9780511546792
[10] DOI: 10.1017/S0022112005008098 · Zbl 1156.76464 · doi:10.1017/S0022112005008098
[11] Poinsot, Theoretical and Numerical Combustion (2005)
[12] DOI: 10.1016/j.combustflame.2004.01.007 · doi:10.1016/j.combustflame.2004.01.007
[13] DOI: 10.1080/00102209008951608 · doi:10.1080/00102209008951608
[14] DOI: 10.1080/00102209508907714 · doi:10.1080/00102209508907714
[15] DOI: 10.1177/109434209901300405 · doi:10.1177/109434209901300405
[16] DOI: 10.1080/00102209208947195 · doi:10.1080/00102209208947195
[17] Peters, Proc. Combust. Inst. 27 pp 833– (1998) · doi:10.1016/S0082-0784(98)80479-7
[18] DOI: 10.1016/j.combustflame.2009.08.001 · doi:10.1016/j.combustflame.2009.08.001
[19] DOI: 10.1137/S0036139998346439 · Zbl 1061.76023 · doi:10.1137/S0036139998346439
[20] DOI: 10.1006/jcph.1998.6079 · Zbl 0913.76060 · doi:10.1006/jcph.1998.6079
[21] DOI: 10.1023/A:1025669715376 · Zbl 0905.76055 · doi:10.1023/A:1025669715376
[22] DOI: 10.1016/S1540-7489(02)80188-2 · doi:10.1016/S1540-7489(02)80188-2
[23] DOI: 10.1016/S0010-2180(98)00137-0 · doi:10.1016/S0010-2180(98)00137-0
[24] DOI: 10.1146/annurev.fl.15.010183.001143 · doi:10.1146/annurev.fl.15.010183.001143
[25] DOI: 10.1080/13647830600636049 · Zbl 1115.80309 · doi:10.1080/13647830600636049
[26] DOI: 10.1016/j.proci.2004.07.041 · doi:10.1016/j.proci.2004.07.041
[27] DOI: 10.1080/00102207708946779 · doi:10.1080/00102207708946779
[28] DOI: 10.1016/j.pecs.2005.01.001 · doi:10.1016/j.pecs.2005.01.001
[29] DOI: 10.1016/0094-5765(77)90096-0 · Zbl 0427.76047 · doi:10.1016/0094-5765(77)90096-0
[30] DOI: 10.1103/PhysRevE.56.2966 · doi:10.1103/PhysRevE.56.2966
[31] DOI: 10.1016/j.combustflame.2011.01.026 · doi:10.1016/j.combustflame.2011.01.026
[32] DOI: 10.1016/j.combustflame.2008.10.029 · doi:10.1016/j.combustflame.2008.10.029
[33] DOI: 10.1017/S002211208200247X · Zbl 0513.76102 · doi:10.1017/S002211208200247X
[34] DOI: 10.1063/1.869723 · Zbl 1170.80328 · doi:10.1063/1.869723
[35] Patnaik, Proc. Combust. Inst. 22 pp 1517– (1988) · doi:10.1016/S0082-0784(89)80162-6
[36] DOI: 10.1016/S0010-2180(00)00113-9 · doi:10.1016/S0010-2180(00)00113-9
[37] DOI: 10.1016/j.proci.2010.06.029 · doi:10.1016/j.proci.2010.06.029
[38] DOI: 10.1016/0021-9991(84)90128-1 · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[39] DOI: 10.1016/S0010-2180(00)00208-X · doi:10.1016/S0010-2180(00)00208-X
[40] DOI: 10.1080/13647830.2010.538722 · Zbl 1219.80118 · doi:10.1080/13647830.2010.538722
[41] DOI: 10.1016/0010-2180(69)90042-X · doi:10.1016/0010-2180(69)90042-X
[42] Barenblatt, J. Appl. Mech. Tech. 4 pp 21– (1962)
[43] DOI: 10.1016/0360-1285(85)90012-7 · doi:10.1016/0360-1285(85)90012-7
[44] DOI: 10.1016/0010-2180(82)90128-6 · doi:10.1016/0010-2180(82)90128-6
[45] DOI: 10.1016/j.proci.2010.06.082 · doi:10.1016/j.proci.2010.06.082
[46] Chung, Combust. Flame 55 pp 1984– (1984)
[47] DOI: 10.1016/0094-5765(77)90097-2 · Zbl 0427.76048 · doi:10.1016/0094-5765(77)90097-2
[48] DOI: 10.1017/S0022112058000148 · doi:10.1017/S0022112058000148
[49] DOI: 10.1017/S0022112082002481 · Zbl 0545.76133 · doi:10.1017/S0022112082002481
[50] Chen, Proc. Combust. Inst. 27 pp 819– (1998) · doi:10.1016/S0082-0784(98)80477-3
[51] DOI: 10.1017/S0022112003004683 · Zbl 1071.76066 · doi:10.1017/S0022112003004683
[52] DOI: 10.1146/annurev.fluid.38.050304.092153 · doi:10.1146/annurev.fluid.38.050304.092153
[53] DOI: 10.1080/00102208308923638 · doi:10.1080/00102208308923638
[54] Markstein, Nonsteady Flame Propagation (1964)
[55] Markstein, J. Aeronaut. Sci. 18 pp 199– (1951) · doi:10.2514/8.1900
[56] DOI: 10.1016/j.proci.2006.07.180 · doi:10.1016/j.proci.2006.07.180
[57] DOI: 10.1002/kin.20026 · doi:10.1002/kin.20026
[58] Yuan, Phys. Fluids 17 pp 1063– (2005)
[59] DOI: 10.1080/00102200500290690 · doi:10.1080/00102200500290690
[60] Williams, Combustion Theory (1985)
[61] Landau, Acta Physicochim. USSR 19 pp 77– (1944)
[62] DOI: 10.1137/S0036139998346440 · Zbl 1061.76024 · doi:10.1137/S0036139998346440
[63] DOI: 10.1080/13647830500472354 · Zbl 1115.80317 · doi:10.1080/13647830500472354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.