×

zbMATH — the first resource for mathematics

Interaction between an elastic structure and free-surface flows: Experimental versus numerical comparisons using the PFEM. (English) Zbl 1177.74140
Summary: The paper aims to introduce new fluid-structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.

MSC:
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74-05 Experimental work for problems pertaining to mechanics of deformable solids
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Idelsohn SR, Oñate E, Del Pin F and Calvo N (2006). Fluid–structure interaction using the particle finite element method. Comput Method Appl Mech Eng 195: 2100–2123 · Zbl 1178.76230 · doi:10.1016/j.cma.2005.02.026
[2] Tezduyar TE (2001). Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130 · Zbl 1039.76037 · doi:10.1007/BF02897870
[3] Akin JE, Tezduyar TE and Ungor M (2007). Computation of flow problems with the mixed Interface-Tracking/Interface-Capturing Technique (MITICT). Comput Fluids 36: 2–11 · Zbl 1181.76105 · doi:10.1016/j.compfluid.2005.07.008
[4] Cruchaga MA, Celentano DJ and Tezduyar TE (2007). A numerical model based on the mixed Interface-Tracking/Interface-Capturing Technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Methods Fluids 54: 1021–1030 · Zbl 1128.76033 · doi:10.1002/fld.1498
[5] Idelsohn SR, Oñate E and Del Pin F (2004). The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61: 964–984 · Zbl 1075.76576 · doi:10.1002/nme.1096
[6] Larese A, Rossi R, Oñate E, Idelsohn SR (2007) Validation of the particle finite element method (PFEM) for simulation of the free surface flows. Accepted in Int J Comput Method · Zbl 1257.76091
[7] Osher S and Fedkiw RP (2001). Level set methods: an overview and some recent reults. J Comput Phys 169: 463–502 · Zbl 0988.65093 · doi:10.1006/jcph.2000.6636
[8] Osher S and Fedkiw RP (2006). Level set methods an dynamic implicit surfaces. Springer, Berlin
[9] Tezduyar T, Aliabadi S and Behr M (1998). Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248 · Zbl 0961.76046 · doi:10.1016/S0045-7825(97)00194-1
[10] Cruchaga MA, Celentano DJ and Tezduyar TE (2005). Moving-interface computations with the Edge-Tracked Interface Locator Technique (ETILT). Int J Numer Methods Fluids 47: 451–469 · Zbl 1134.76382 · doi:10.1002/fld.825
[11] Roubtsova V and Kahawita R (2006). The SPH technique applied to free-surface flows. Comput Fluids 35: 1359–1371 · Zbl 1177.76327 · doi:10.1016/j.compfluid.2005.08.012
[12] Bonet J, Kulasagaram S, Rodriguez-Paz MX and Profit M (2004). Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput Methods Appl Mech Eng 193: 1245–1256 · Zbl 1060.76637 · doi:10.1016/j.cma.2003.12.018
[13] Oñate E, Idelsohn SR, Del Pin F and Aubry R (2004). The particle finite element method. An overview. Int J Comput Method 2: 267–307 · Zbl 1182.76901
[14] Idelsohn SR, Oñate E, Calvo N and Del Pin F (2003). The meshless finite element method. Int J Numer Methods Eng 58(6): 893–912 · Zbl 1035.65129 · doi:10.1002/nme.798
[15] Idelsohn SR, Calvo N and Oñate E (2003). Polyhedrization of an arbitrary 3D point set. Comput Methods Appl Mech Eng 192: 2649–2667 · Zbl 1040.65019 · doi:10.1016/S0045-7825(03)00298-6
[16] Donea J and Huerta A (2003). Finite elements methods for flow problems. Wiley, New York
[17] Zienkiewicz OC, Taylor R.L and Nitharasu P (2005). The finite element method. Fluid dynamics, vol. III. Elsevier, Amsterdam
[18] Oñate E (2000). A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182: 355–370 · Zbl 0977.76050 · doi:10.1016/S0045-7825(99)00198-X
[19] Oñate E and Idelsohn SR (1998). A mesh free finite point method for advective diffusive transport and fluid flow problem. Comput Mech 21: 283–292 · Zbl 0919.76072 · doi:10.1007/s004660050304
[20] Edelsbruner H and Mucke EP (1994). Three dimensional alpha shape. ACM Trans Graph 13: 43–72 · Zbl 0806.68107 · doi:10.1145/174462.156635
[21] Souto-Iglesias A, Delorme L, Pérez-Rojas L and Abril-Pérez S (2006). Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Eng 33: 1462–1484 · doi:10.1016/j.oceaneng.2005.10.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.