zbMATH — the first resource for mathematics

Regularity, local and microlocal analysis in theories of generalized functions. (English) Zbl 1196.35027
Author’s abstract: We introduce a general context involving a presheaf \(\mathcal{A}\) and a subpresheaf \(\mathcal B\) of \(\mathcal{A}\). We show that all previously considered cases of local analysis of generalized functions (defined from duality or algebraic techniques) can be interpretated as the \(\mathcal B\)-local analysis of sections of \(\mathcal{A}\).
But the microlocal analysis of the sections of sheaves or presheaves under consideration is dissociated into a “frequential microlocal analysis” and into a “microlocal asymptotic analysis”. The frequential microlocal analysis based on the Fourier transform leads to the study of propagation of singularities under only linear (including pseudodifferential) operators in the theories described here, but has been extended to some non linear cases in classical theories involving Sobolev techniques. Microlocal asymptotic analysis is a new spectral study of singularities. It can inherit from the algebraic structure of \(\mathcal B\) some good properties with respect to nonlinear operations.

35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35A18 Wave front sets in context of PDEs
35L60 First-order nonlinear hyperbolic equations
46F30 Generalized functions for nonlinear analysis (Rosinger, Colombeau, nonstandard, etc.)
Full Text: DOI
[1] Aragona, J., Biagioni, H.: Intrinsic definition of the Colombeau algebra of generalized functions. Anal. Math. 17, 75–132 (1991) · Zbl 0765.46019 · doi:10.1007/BF01906598
[2] Beals, M.: Propagation of smoothness for nonlinear second order strictly hyperbolic differential equations. Proc. Symp. Pure Math. 43, 21–44 (1985) · Zbl 0575.35062
[3] Beals, M.: Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 3. Birkhausen Boston, Cambridge (1989) · Zbl 0698.35100
[4] Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Super. 14, 209–246 (1981)
[5] Bony, J.-M.: Analyse Microlocale des Équations aux Dérivées Partielles Non Linéaires. Lecture Notes in Math., vol. 1495, pp. 1–45. Springer, Berlin (1991)
[6] Bouzar, C., Benmeriem, K.: Colombeau generalized gevrey ultradistributios and their microlocal analysis. arXiv: 0707.0124 [math.FA] (2007) · Zbl 1253.46049
[7] Colombeau, J.F.: Multiplication of Distributions: A Tool in Mathematics, Numerical Engineering and Theoretical Physics. Lecture Notes in Mathematics, vol. 1532. Springer, Berlin (1992) · Zbl 0815.35002
[8] Colombeau, J.F.: Generalized functions and infinitesimals. arXiv: 0610264 [math.FA] (2006)
[9] Colombeau, J.F.: Generalized functions as a tool for nonsmooth nonlinear problems in mathematics and physics. arXiv: 0612077 [math.-ph.] (2006)
[10] Colombeau, J.F.: Nonlinear generalized functions and nonlinear numerical simulations in fluid and solid continuum mechanics. arXiv: 0702014 [math.-ph.] (2007)
[11] Dapic, N., Pilipovic, S., Scarpalézos, D.: Microlocal analysis of Colombeau’s generalized function: propagation of singularities. J. Anal. Math. 75, 51–66 (1998) · Zbl 0922.46036 · doi:10.1007/BF02788691
[12] Delcroix, A.: Regular rapidly decreasing nonlinear generalized functions. Application to microlocal regularity. J. Math. Anal. Appl. 327, 564–584 (2007) · Zbl 1115.46033 · doi:10.1016/j.jmaa.2006.04.045
[13] Delcroix, A., Marti, J.-A.: \(\mathcal{G}^{r,\mathcal{R},L}\) -microlocal analysis of generalized functions. Preprint
[14] Delcroix, A., Marti, J.-A., Oberguggenberger, M.: Microlocal asymptotic analysis in algebras of generalized functions. arXiv: 0704.1077 [math.FA] (2007) · Zbl 1163.35303
[15] Garetto, C., Gramchev, T., Oberguggenberger, M.: Pseudo-differential operators and regularity theory. Electr. J. Differ. Equ. 116, 1–43 (2005) · Zbl 1087.35102
[16] Garetto, C.: Topological structures in Colombeau algebras: topological \(\widetilde{\mathbb{C}}\) -modules and duality theory. Acta Appl. Math. 80(1), 81–125 (2005) · Zbl 1110.46031 · doi:10.1007/s10440-005-6700-y
[17] Garetto, C.: Microlocal analysis in the dual of a Colombeau algebra: generalized wave front sets and noncharacteristic regularity. J. Math. (New York) 12, 275–318 (2006) · Zbl 1110.46032
[18] Garetto, C., Hörmann, G.: Microlocal analysis of generalized functions: pseudodifferential techniques and propagation of singularities. Proc. Edinb. Math. Soc. 48, 603–629 (2005) · Zbl 1175.46032 · doi:10.1017/S0013091504000148
[19] Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions with Applications to General Relativity. Kluwer Academic, Dordrecht (2001) · Zbl 0998.46015
[20] Godement, R.: Topologie Algébrique et Théorie des Faisceaux. Hermann, Paris (1958) · Zbl 0080.16201
[21] Gramchev, T.: Nonlinear maps in spaces of distributions. Math. Z. 209(1), 101–114 (1992) · Zbl 0744.46021 · doi:10.1007/BF02570824
[22] Hörmander, L.: The Analysis of Linear Partial Differential Operators, I: Distribution Theory and Fourier Analysis. Grundlehren der mathematischen Wissenschaften, vol. 256, 2nd edn. Springer, Berlin (1990) · Zbl 0712.35001
[23] Hörmander, L.: Fourier integral operators I. Acta Math. 127, 79–183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[24] Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997) · Zbl 0881.35001
[25] Hörmann, G., De Hoop, M.V.: Microlocal analysis and global solutions for some hyperbolic equations with discontinuous coefficients. Acta Appl. Math. 67, 173–224 (2001) · Zbl 0998.46016 · doi:10.1023/A:1010614332739
[26] Hörmann, G., Kunzinger, M.: Microlocal properties of basic operations in Colombeau algebras. J. Math. Anal. Appl. 261, 254–270 (2001) · Zbl 0998.46017 · doi:10.1006/jmaa.2001.7498
[27] Hörmann, G., Oberguggenberger, M., Pilipović, S.: Microlocal hypoellipticity of linear differential operators with generalized functions as coefficients. Trans. Am. Math. Soc. 358, 3363–3383 (2006) · Zbl 1101.35005 · doi:10.1090/S0002-9947-05-03759-1
[28] Marti, J.-A.: \((\mathcal{C},\mathcal{E},\mathcal{P})\) -Sheaf structure and applications. In: Grosser, M., Hörmann, G., Kunzinger, M., Oberguggenberger, M. (eds.) Nonlinear Theory of Generalized Functions. Chapman & Hall/CRC Research Notes in Mathematics, vol. 401, pp. 175–186. CRC Press, Boca Raton (1999) · Zbl 0938.35008
[29] Marti, J.-A.: Nonlinear algebraic analysis of delta shock wave to Burgers’ equation. Pac. J. Math. 210(1), 165–187 (2003) · Zbl 1059.35122 · doi:10.2140/pjm.2003.210.165
[30] Marti, J.-A.: \(\mathcal{G}^{L}\) -microlocal analysis of generalized functions. Integral Transforms. Spec. Funct. 2–3, 119–125 (2006) · Zbl 1105.46028 · doi:10.1080/10652460500437732
[31] Nedeljkov, M., Pilipović, S., Scarpalézos, D.: The Linear Theory of Colombeau Generalized Functions. Pitman Research Notes in Mathematics, vol. 385. Longman, Harlow (1998) · Zbl 0918.46036
[32] Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations. Pitman Research Notes in Mathematics, vol. 259. Longman, Harlow (1992) · Zbl 0818.46036
[33] Oberguggenberger, M.: Generalized solutions to nonlinear wave equations. Mat. Contemp. 27, 169–187 (2004)
[34] Pilipovic, S., Scarpalézos, D., Valmorin, V.: Real analytic generalized functions. Preprint
[35] Rauch, J.: Singularities of solutions to semilinear wave equation. J. Math. Pures Appl. 58, 299–308 (1979) · Zbl 0388.35045
[36] Rauch, J., Reed, M.: Jump discontinuities of semilinear, strictly hyperbolic equations in two variables: Creation and propagation. Commun. Math. Phys. 81, 203–227 (1981) · Zbl 0468.35064 · doi:10.1007/BF01208895
[37] Scarpalézos, D.: Colombeau’s generalized functions: topological structures; microlocal properties. A simplified point of view. Bull. Cl. Sci. Math. Nat. Sci. Math. 25, 89–114 (2000) · Zbl 1011.46042
[38] Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)
[39] Travers, K.: Semilinear hyperbolic systems in one space dimension with strongly singular initial data. Electron. J. Differ. Equ. 14, 1–11 (1997) · Zbl 0886.35090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.