×

zbMATH — the first resource for mathematics

Branes in the moduli space of framed sheaves. (English) Zbl 1396.14014
Branes in the moduli space of Higgs bundles provide a connection between the geometric Langland program and mirror symmetry. In this work the authors contribute to the study of branes in other types of varieties, namely, they present a systematic study of the existence of branes in Nakajima quiver varieties. In section 2 is presented an overview of the construction of Nakajima quiver varieties, fixing the terminology and objects that will be needed further in the work. In section 3, a systematic method to construct branes of all possible types on Nakajima quiver varieties is obtained, by describing several types of involutions on these varieties. Finally, in section 4, the methods presented in section 3 are used to produce examples of non-empty branes in the moduli spaces of framed torsion free sheaves on the projective plane, which are particular cases of Nakajima quiver varieties.

MSC:
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
32M10 Homogeneous complex manifolds
14H70 Relationships between algebraic curves and integrable systems
16G20 Representations of quivers and partially ordered sets
14D24 Geometric Langlands program (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M. F., K-theory and reality, Q. J. Math., 17, 367-386, (1966) · Zbl 0146.19101
[2] Abuaf, R.; Boralevi, A., Orthogonal bundles and skew-Hamiltonian matrices, Can. J. Math., 67, 961-989, (2015) · Zbl 1333.14036
[3] Baraglia, D.; Schaposnik, L. P., Higgs bundles and \((A, B, A)\)-branes, Commun. Math. Phys., 331, 1271-1300, (2014) · Zbl 1311.53058
[4] Baraglia, D.; Schaposnik, L. P., Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys., 20, 525-551, (2016) · Zbl 1372.81165
[5] Biswas, I.; Garcia-Prada, O., Anti-holomorphic involutions of the moduli spaces of Higgs bundles, J. Éc. Polytech. Math., 2, 35-54, (2015) · Zbl 1333.14032
[6] Biswas, I.; Garcia-Prada, O.; Hurtubise, J., Pseudo-real principal Higgs bundles on compact Kähler manifolds, Ann. Inst. Fourier, 64, 2527-2562, (2014) · Zbl 1329.14106
[7] Biswas, I.; Huisman, J.; Hurtubise, J., The moduli space of stable vector bundles over a real algebraic curve, Math. Ann., 347, 201-233, (2010) · Zbl 1195.14048
[8] Costa, L.; Ottaviani, G., Nondegenerate multidimensional matrices and instanton bundles, Trans. Am. Math. Soc., 355, 49-55, (2003) · Zbl 1031.14004
[9] Donaldson, S. K., Instantons and geometric invariant theory, Commun. Math. Phys., 93, 453-460, (1984) · Zbl 0581.14008
[10] Garcia-Prada, O., Involutions of the moduli space of \(\operatorname{SL}(n, \mathbb{C})\)-Higgs bundles and real forms, (Casnati, G.; Catanese, F.; Notari, R., Vector Bundles and Low Codimensional SubvarietiesState of the Art and Recent Developments, (2007)), Quaderni di Matematica
[11] Garcia-Prada, O., Higgs bundles and surface group representations, (Moduli Spaces and Vector Bundles, LMS Lecture Notes Series, vol. 359, (2009), Cambridge University Press), 265-310 · Zbl 1187.14037
[12] Ginzburg, V., Lectures on Nakajima’s quiver varieties, (Geometric Methods in Representation Theory, Sémin. Congr., 24-I, (2012), Soc. Math. France Paris), 145-219 · Zbl 1305.16009
[13] Hitchin, N. J., Higgs bundles and characteristic classes, (Arbeitstagung Bonn 2013, Prog. Math., vol. 319, (2015), Birkhäuser/Springer Cham), 247-264 · Zbl 1379.57035
[14] Jardim, M.; Marchesi, S.; Wissdorf, A., Moduli of autodual instanton bundles, Bull. Braz. Math. Soc., bf 47, 823-843, (2016) · Zbl 1371.14017
[15] Kapustin, A.; Witten, E., Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys., 1, 1-236, (2007) · Zbl 1128.22013
[16] Kempf, G.; Ness, L., The length of vectors in representation spaces, (Algebraic Geometry, Proceedings, Copenhagen, Springer Lecture Notes, vol. 732, (1978)), 233-244
[17] King, A. D., Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxf., 45, 515-530, (1994) · Zbl 0837.16005
[18] Nakajima, H., Instantons on ALE spaces, quiver varieties and Kac-Moody algebras, Duke Math. J., 76, 365-416, (1994) · Zbl 0826.17026
[19] Nakajima, H., Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, (1999), American Mathematical Society Providence, RI · Zbl 0949.14001
[20] Ottaviani, G., Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited, Quad. Math., 21, 315-352, (2007)
[21] Scalise, J., Framed symplectic sheaves on surfaces, Preprint · Zbl 06833209
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.