zbMATH — the first resource for mathematics

On holomorphic distributions on Fano threefolds. (English) Zbl 1439.57047
Summary: This paper is devoted to the study of holomorphic distributions of dimension and codimension one on smooth weighted projective complete intersection Fano manifolds \(X\) which is threedimensional and with Picard number equal to one. We study the relations between algebro-geometric properties of the singular set of singular holomorphic distributions and their associated sheaves. We characterize either distributions whose tangent sheaf or conormal sheaf are arithmetically Cohen Macaulay (aCM) on \(X\). We also prove that a codimension one locally free distribution with trivial canonical bundle on any Fano threefold, with Picard number equal to one, has a tangent sheaf which either splits or it is stable.
57R30 Foliations in differential topology; geometric theory
14J45 Fano varieties
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
32S65 Singularities of holomorphic vector fields and foliations
Full Text: DOI
[1] Araujo, C.; Corrêa, M., On degeneracy scheme of maps of vector bundles and application to holomorphic foliations, Math. Z., 276, 505-515 (2013)
[2] Araujo, C.; Corrêa, M.; Massarenti, A., Codimension one Fano distributions on Fano manifolds, Commun. Contemp. Math., 20 (2018)
[3] Arrondo, E.; Costa, L., Vector bundles on Fano 3-folds without intermediate cohomology, Commun. Algebra, 28, 3899-3911 (2000)
[4] Ballico, E., On Buchsbaum bundles on quadric hypersurfaces, Cent. Eur. J. Math., 10, 1361-1379 (2012)
[5] Calvo-Andrade, O.; Corrêa, M.; Jardim, M., Codimension one holomorphic distributions on the projective three-space, Int. Math. Res. Not., 251 (2018)
[6] Casanellas, M.; Hartshorne, R., Gorenstein biliason and ACM sheaves, J. Algebra, 278, 314-341 (2004)
[7] Cerveau, D.; Lins Neto, A., Irreducible components of the space of holomorphic foliations of degree two in \(\mathbb{C} \mathbb{P}(n)\), Ann. Math., 143, 577-612 (1996)
[8] Corrêa, M.; Jardim, M.; Vidal Martins, R., On the singular scheme of split foliations, Indiana Univ. Math. J., 64, 1359-1381 (2015)
[9] Corrêa, M.; Maza, L. G.; Soares, M. G., Hypersurfaces invariant by Pfaff equations, Commun. Contemp. Math., 17 (2015)
[10] Corrêa, M.; Maza, L. G.; Soares, M. G., Algebraic integrability of polynomial differential r-forms, J. Pure Appl. Algebra, 215, 9, 2290-2294 (2011)
[11] Corti, A.; Reid, M., Explicit Birational Geometry of 3-Folds, London Mathematical Society Lecture Note Series (2000), Cambridge University Press
[12] Dolgachev, I., Weighted Projective Varieties, Lecture Notes in Mathematics, vol. 956 (1982), Springer Verlag
[13] Esteves, E.; Kleiman, S. L., Bounding solutions of Pfaff equations, Commun. Algebra, 31 (2003)
[14] Flenner, H., Divisorenklassengruppen quasihomogener Singularitäten, J. Reine Angew. Math., 328, 128-160 (1981)
[15] Fulton, W., Intersection Theory, Ergeb. Math. Grenz. (1983), Springer-Verlag
[16] Giraldo, L.; Pan-Collantes, A. J., On the singular scheme of codimension one holomorphic foliations in \(\mathbb{P}^3\), Int. J. Math., 7, 843-858 (2010)
[17] Griffiths, P., Hermitian Differential Geometry, Chern Classes, and Positive Vector Bundles. Global Analysis (Papers in Honor of K. Kodaira), 185-251 (1969), Univ. Tokyo Press: Univ. Tokyo Press Tokyo
[18] Hartshorne, R., Stable reflexive sheaves, Math. Ann., 254, 121-176 (1980)
[19] Iskovskikh, V. A., Fano threefolds I, Math. USSR, Izv., 11, 485-527 (1977)
[20] Iskovskikh, V. A., Fano threefolds II, Math. USSR, Izv., 12, 469-506 (1978)
[21] Kobayashi, S.; Ochiai, T., Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., 13, 31-47 (1973)
[22] Loray, F.; Pereira, J. V.; Touzet, F., Foliations with trivial canonical bundle on Fano 3-folds, Math. Nachr., 286, 921-940 (2013)
[23] Madonna, C., ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds, Rev. Roum. Math. Pures Appl., 47, 211-222 (2002)
[24] Mukai, S., Fano 3-folds, Lond. Math. Soc. Lect. Notes Ser., 179, 255-263 (1992)
[25] Ottaviani, G., Spinor bundles on quadrics, Trans. Am. Math. Soc., 307, 301-316 (1988)
[26] Ottaviani, G., Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl., 317-341 (1989)
[27] Shepherd-Barron, N. I., Fano threefolds in positive characteristic, Compos. Math., 105, 237-265 (1997)
[28] Snow, D. M., Cohomology of twisted holomorphic forms on Grassmann manifolds and quadric hypersurfaces, Math. Ann., 276, 159-176 (1986)
[29] Stückrad, J.; Vogel, W., Buchsbaum Rings and Applications (1986), Springer: Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.