zbMATH — the first resource for mathematics

Simplicity and exceptionality of syzygy bundles over \(\mathbb{P}^n\). (English) Zbl 1349.14062
A syzygy bundle \(F\) on \(\mathbb P^n\) is a vector bundle which arises by splitting of a resolution on \(\mathbb P^n\) of the type: \[ 0\rightarrow \mathcal O^{b_{n+1}}(-d_{n+1})\rightarrow\dots\rightarrow\mathcal O^{b_1}(-d_1)\rightarrow\mathcal O^{b_0}(-d_0)\rightarrow 0 \] for integers \(d_0<d_1<\dots<d_{n+1}\).
The authors find criteria of simplicity and exceptionality of syzygy bundles. A vector bundle \(F\) is simple if \(\mathrm{Hom}(F,F)=\mathbb C\), and \(F\) is exceptional if it is simple and moreover \(\mathrm{Ext}^i(F,F)=0\) for all \(i>0\).
The property of exceptionality is interesting also for its relation with the stability of a vector bundle: a long-standing conjecture says that every exceptional bundle on \(\mathbb P^n\) is stable, see [J. M. Drezet and J. Le Potier, Ann. Sci. Éc. Norm. Supér. (4) 18, 193–243 (1985; Zbl 0586.14007)] and [M. C. Brambilla, Math. Nachr. 281, No. 4, 499–516 (2008; Zbl 1156.14013)] for more details.

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
13D02 Syzygies, resolutions, complexes and commutative rings
16E05 Syzygies, resolutions, complexes in associative algebras
Full Text: DOI
[1] Brambilla, MC, Cokernel bundles and Fibonacci bundles, Math. Nachr., 4, 499-516, (2008) · Zbl 1156.14013
[2] Bohnhorst, G; Spindler, H, The stability of certain vector bundles on \(\mathbb{P}^n\), Lect. Notes Math., 1507, 39-50, (1992) · Zbl 0773.14008
[3] Boij, M; Söderberg, J, Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, J. Lond. Math. Soc., 78, 85-106, (2008) · Zbl 1189.13008
[4] Brenner, H, Looking out for stable Syzygy bundles, Ad. Math., 219, 401-427, (2008) · Zbl 1166.13007
[5] Coanda, I, On the stability of Syzygy bundles, Int. J. Math., 4, 515-534, (2011) · Zbl 1222.14093
[6] Costa, L; Marques, PM; Miró-Roig, RM, Stability and unobstructedness of Syzygy bundles, J. Pure Appl. Algebra, 214, 1241-1262, (2010) · Zbl 1186.14045
[7] Drèzet, J.-M., Le Potier, J.: Fibrés stables et fibrés exceptionnels sur\(\mathbb{P}^2\), Ann. Sci. Ecole Norm. Sup. (2) 18, 193-243 (1985) MR816365 (87e:14014) · Zbl 1162.13302
[8] Ein, L; Lazarsfeld, R, Asymptotic syzygies of algebraic varieties, Invent. math., 3, 603-646, (2012) · Zbl 1262.13018
[9] Ein, L., Lazarsfeld, R., Mustopa, H.: Stability of syzygy bundles on an algebraic surface. Math. Res. Lett. 20(1), 73-89 (2013) · Zbl 1299.14038
[10] Eisenbud, D; Schreyer, FO, Betti numbers of graded modules and cohomology of vector bundles, J. Am. Math. Soc., 22, 859-888, (2009) · Zbl 1213.13032
[11] Herzog, J; Kühl, M, On the Betti numbers of finite pure and linear resolutions, Commun. Algebra, 13, 1627-1646, (1984) · Zbl 0543.13008
[12] Jardim, M; Martins, RV, Linear and Steiner bundles on projective varieties, Commun. Algebra, 38, 2249-2270, (2010) · Zbl 1211.14049
[13] Jardim, M., Prata, D.M.: Pure resolutions of vector bundles on complex projective spaces. http://arxiv.org/abs/1210.7835 (2012). Accessed 10 Mar 2013 · Zbl 0773.14008
[14] Migliore, JC; Miró-Roig, RM; Nagel, U, Minimal resolution of relatively compressed level algebras, J. Algebra, 1, 333-370, (2005) · Zbl 1162.13302
[15] Miró-Roig, R.M.: Determinantal Ideals. Progress in Mathematics 264, Birkhauser, Basel (2008) · Zbl 1131.14002
[16] Miró-Roig, RM; Soares, H, Cohomological characterisation of Steiner bundles, Forum Math., 21, 871-891, (2009) · Zbl 1181.14050
[17] Zube, D.Y.: The stability of exceptional bundles on three-dimensional projective space. In: Helices and Vector Bundles. London Math. Soc. Lecture Note Ser., 148, pp. 115-117. Cambridge Univ. Press, Cambridge (1990) · Zbl 0725.14013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.