zbMATH — the first resource for mathematics

Moduli of autodual instanton bundles. (English) Zbl 1371.14017
Authors’ abstract: We provide a description of the moduli space of framed autodual instanton bundles on \(\mathbb {P}^n\), focusing on the particular cases of symplectic and orthogonal instantons. Our description will use the generalized ADHM equations which define framed instanton sheaves. There are description theorems (the objects are in a bijection with something else) and as an application non-existence results, e. g. the non-existence of orthogonal instanton bundles on \(\mathbb {P}^n\) of trivial splitting type, arbitrary rank \(r\), and charge \(2\). The introduction and the references are very helpful.

14D20 Algebraic moduli problems, moduli of vector bundles
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
Full Text: DOI
[1] Abuaf, R.; Boralevi, A., Orthogonal bundles and skew-Hamiltonian matrices, Canad. J. Math., 67, 961-989, (2015) · Zbl 1333.14036
[2] Atiyah, M.; Drinfeld, V.; Hitchin, N.; Manin, Y., Construction of instantons, Phys. Lett., 65A, 185-187, (1978) · Zbl 0424.14004
[3] Ancona, V.; Ottaviani, G., Stability of special instanton bundles on P2n+1, Trans. Amer. Math. Soc., 341, 677-693, (1994) · Zbl 0810.14007
[4] Bruzzo, U.; Markushevich, D.; Tikhomirov, A.S., Moduli of symplectic instanton vector bundles of higher rank on projective space P3, Cent. Eur. J. Math., 10, 1232-1245, (2012) · Zbl 1282.14020
[5] Costa, L.; Hoffmann, N.; Miró-Roig, R.M.; Schmitt, A., Rational families of instanton bundles on P2n+1, Algebr.Geom., 2, 229-260, (2014) · Zbl 1332.14023
[6] Costa, L.; Ottaviani, G., Nondegenerate multidimensionalmatrices and instanton bundles, Trans. Amer. Math. Soc., 355, 49-55, (2002) · Zbl 1031.14004
[7] Coanda, I.; Tikhomirov, A.S.; Trautmann, G., Irreducibility and smoothness of themoduli space ofmathematical 5-instantons over P3, Int. J. Math., 14, 1-45, (2003) · Zbl 1059.14018
[8] Farnik, L.; Frapporti, D.; Marchesi, S., On the non-existence of orthogonal instanton bundles on P2n+1, Le Matematiche Catania, 2, 81-90, (2009) · Zbl 1200.14085
[9] Frenkel, I.B.; Jardim, M., Complex ADHM equations and sheaves on P3, J. Algebra, 319, 2913-2937, (2008) · Zbl 1145.14017
[10] Henni, A.; Jardim, M.; Martins, R.V., ADHM construction of perverse instanton sheaves, Glasgow Math. J., 57, 285-321, (2015) · Zbl 1316.14024
[11] Jardim, M., Atiyah-Drinfeld-Hitchin-Manin construction of framed instanton sheaves, C. R. Acad. Sci. Paris, 346, 427-430, (2008) · Zbl 1143.14036
[12] Jardim, M.; Silva, V.M.F., Decomposability criterion for linear sheaves, Cent. Eur. J. Math., 10, 1292-1299, (2012) · Zbl 1278.14015
[13] Jardim, M.; Verbitsky, M., Trihyperkahler reduction and instanton bundles on CP3, CompositioMath., 150, 1836-1868, (2014) · Zbl 1396.14012
[14] Mamone Capria, M.; Salamon, S.M., Yang-Mills fields on quaternionic spaces, Nonlinearity, 1, 517-530, (1988) · Zbl 0681.53037
[15] Okonek, C.; Spindler, H., Mathematical instanton bundles on P2n+1, J. Reine Angew. Math., 364, 35-50, (1986) · Zbl 0568.14009
[16] C. Okonek, M. Schneider and H. Spindler. Vector bundles on complex projective spaces. Birkhäuser (1980). · Zbl 0438.32016
[17] Ottaviani, G., Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited, Quad. Math., 21, 315-352, (2007)
[18] Spindler, H.; Trautmann, G., Special instanton bundles on P2n+1, their geometry and their moduli.math, Ann., 286, 559-592, (1990) · Zbl 0752.14014
[19] Tikhomirov, A., Moduli of mathematical instanton vector bundles with odd c2 on projective space, Izvestiya: Mathematics, 76, 991-1073, (2012) · Zbl 1262.14053
[20] Tikhomirov, A., Moduli of mathematical instanton vector bundles with odd c2 on projective space, Izvestiya: Mathematics, 77, 1331-1355, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.