zbMATH — the first resource for mathematics

Curves with canonical models on scrolls. (English) Zbl 1357.14040
Throughout, let \(C\) be a curve (i.e., an integral, complete, one-dimensional scheme) over an algebraically closed field of arithmetic genus \(g\). Let \(C'\subseteq {\mathbb P}^{g-1}\) be its canonical model which is defined by the global sections of the dualizing sheaf of \(C\). It is well-known so far that properties on trigonal Gorenstein curves can be deduced whenever its canonical model is contained in a surface scroll; e.g. [K.-O. Stöhr, J. Pure Appl. Algebra 135, No. 1, 93–105 (1999; Zbl 0940.14018)], [R. Rosa and K.-O. Stöhr, J. Pure Appl. Algebra 174, No. 2, 187–205 (2002; Zbl 1059.14038)].
In this paper the authors study the case where \(C\) is non-Gorenstein and \(C'\) is contained in a scroll surface. Here the concepts “nearly Gorenstein” and “arithmetically normal” become relevant according respectively to Theorems 5.10 and 4 in [S. L. Kleiman and R. V. Martins, Geom. Dedicata 139, 139–166 (2009; Zbl 1172.14019)]. Moreover, as looking at for examples, they consider rational monomial curves and show that for such a curve its canonical model is contained in a scroll surface if and only if the curve is trigonal. This leads to the question when a nonhyperelliptic curve can be characterized by its canonical model; in fact, this is worked out for the case of a nonhyperelliptic curve with at most one unibranched singular point. Finally they generalize some results in [F.-O. Schreyer, Math. Ann. 275, 105–137 (1986; Zbl 0578.14002)].

14H20 Singularities of curves, local rings
14H45 Special algebraic curves and curves of low genus
14H51 Special divisors on curves (gonality, Brill-Noether theory)
Full Text: DOI arXiv
[1] 1. E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves (Springer-Verlag, 1985). genRefLink(16, ’S0129167X16500452BIB001’, ’10.1007%252F978-1-4757-5323-3’); · Zbl 0559.14017
[2] 2. E. Arrondo, A home-made Hartshorne-Serre correspondence, preprint (2006), arXiv:math/0610015v1 [math.AG]. · Zbl 1133.14046
[3] 3. D. W. Babbage, A note on the quadrics through a canonical curve, J. London Math. Soc.14 (1939) 310-315. genRefLink(16, ’S0129167X16500452BIB003’, ’10.1112%252Fjlms%252Fs1-14.4.310’); · Zbl 0026.34701
[4] 4. V. Barucci and R. Fröberg, One-dimensional almost gorenstein rings, J. Algebra188 (1997) 418-442. genRefLink(16, ’S0129167X16500452BIB004’, ’10.1006%252Fjabr.1996.6837’); genRefLink(128, ’S0129167X16500452BIB004’, ’A1997WN01200003’);
[5] 5. M. Brundu and G. Sacchiero, Stratification of the moduli space of fourgonal curves, Proc. Edinb. Math. Soc.57(3) (2014) 631-686. genRefLink(16, ’S0129167X16500452BIB005’, ’10.1017%252FS001309151300062X’); genRefLink(128, ’S0129167X16500452BIB005’, ’000341567000004’);
[6] 6. G. Casnati and T. Ekedahl, Covers of algebraic varieties. I. A general structure theorem, covers of degree 3,4 and Enriques surfaces, J. Algebraic Geom.5(3) (1996) 439-460. · Zbl 0866.14009
[7] 7. M. Coppens, Free linear systems on integral Gorenstein curves, J. Algebra145 (1992) 209-218. genRefLink(16, ’S0129167X16500452BIB007’, ’10.1016%252F0021-8693%252892%252990186-P’); genRefLink(128, ’S0129167X16500452BIB007’, ’A1992HC18500014’);
[8] 8. D. Eisenbud and J. Harris, On varieties of minimal degree, Proc. Symp. Pure Math.46 (1987) 3-13. genRefLink(16, ’S0129167X16500452BIB008’, ’10.1090%252Fpspum%252F046.1%252F927946’); · Zbl 0646.14036
[9] 9. F. Enriques, Sulle curve canoniche di genera p cello spazio a p dimensioni, Rend. Accad. Sci. Ist. Bologna23 (1919) 80-82.
[10] 10. L. Feital and R. V. Martins, Gonality of non-Gorenstein curves of genus five, Bull. Braz. Math. Soc.45(4) (2014) 1-22. genRefLink(16, ’S0129167X16500452BIB010’, ’10.1007%252Fs00574-014-0067-5’); · Zbl 1308.14029
[11] 11. R. Hartshorne, Algebraic Geometry (Springer-Verlag, 1977). genRefLink(16, ’S0129167X16500452BIB011’, ’10.1007%252F978-1-4757-3849-0’);
[12] 12. S. L. Kleiman and R. V. Martins, The canonical model of a singular curvee, Geom. Dedicata139 (2009) 139-166. genRefLink(16, ’S0129167X16500452BIB012’, ’10.1007%252Fs10711-008-9331-4’); genRefLink(128, ’S0129167X16500452BIB012’, ’000263790400011’);
[13] 13. D. Lara, Curvas com modelos canônicos em scrolls, Ph.D. thesis, UFMG (2014).
[14] 14. R. V. Martins, On trigonal non-Gorenstein curves with zero Maroni invariant, J. Algebra275 (2004) 453-470. genRefLink(16, ’S0129167X16500452BIB014’, ’10.1016%252Fj.jalgebra.2003.10.033’); genRefLink(128, ’S0129167X16500452BIB014’, ’000221074300001’);
[15] 15. R. V. Martins, Trigonal non-Gorenstein curves, J. Pure Appl. Algebra209 (2007) 873-882. genRefLink(16, ’S0129167X16500452BIB015’, ’10.1016%252Fj.jpaa.2006.08.010’); genRefLink(128, ’S0129167X16500452BIB015’, ’000244819700021’);
[16] 16. R. M. Miró-Roig, The representation type of rational normal scrolls, Rend. Circ. Mat. Palermo62 (2012) 153-164. genRefLink(16, ’S0129167X16500452BIB016’, ’10.1007%252Fs12215-013-0113-y’); · Zbl 1268.14014
[17] 17. M. Noether, Über die invariante darstellung algebraicher funktionen, Math. Ann.17 (1880) 263-284. genRefLink(16, ’S0129167X16500452BIB017’, ’10.1007%252FBF01443474’);
[18] 18. K. Petri, Über die invariante darstellung algebraischer funktionen eiener veränderlichen, Math. Ann.88 (1922) 242-289. genRefLink(16, ’S0129167X16500452BIB018’, ’10.1007%252FBF01579181’); · JFM 49.0264.02
[19] 19. M. Reid, Chapters on algebraic surfaces, preprint (1996), arXiv:alg-geom/9602006v1.
[20] 20. R. Rosa and K.-O. Stöhr, Trigonal Gorenstein curves, J. Pure Appl. Algebra174 (2002) 187-205. genRefLink(16, ’S0129167X16500452BIB020’, ’10.1016%252FS0022-4049%252802%252900122-6’); genRefLink(128, ’S0129167X16500452BIB020’, ’000178014700006’);
[21] 21. M. Rosenlicht, Equivalence relations on algebraic curves, Ann. Math.56 (1952) 169-191. genRefLink(16, ’S0129167X16500452BIB021’, ’10.2307%252F1969773’); genRefLink(128, ’S0129167X16500452BIB021’, ’A1952UL93200011’);
[22] 22. F. Sakai, Weil divisors on normal surfaces, Duke Math. J.51 (1984) 877-887. genRefLink(16, ’S0129167X16500452BIB022’, ’10.1215%252FS0012-7094-84-05138-X’); genRefLink(128, ’S0129167X16500452BIB022’, ’A1984AAC1400004’);
[23] 23. F.-O. Schreyer, Syzygies of canonical curves and special linear series, Math. Ann.275 (1986) 105-137. genRefLink(16, ’S0129167X16500452BIB023’, ’10.1007%252FBF01458587’); genRefLink(128, ’S0129167X16500452BIB023’, ’A1986D357400009’);
[24] 24. K.-O. Stöhr, On the poles of regular differentials of singular curves, Bol. Soc. Brasil. Mat.24 (1993) 105-135. genRefLink(16, ’S0129167X16500452BIB024’, ’10.1007%252FBF01231698’); · Zbl 0788.14020
[25] 25. K.-O. Stöhr, Hyperelliptic Gorenstein curves, J. Pure Appl. Algebra135 (1999) 93-105. genRefLink(16, ’S0129167X16500452BIB025’, ’10.1016%252FS0022-4049%252897%252900124-2’); genRefLink(128, ’S0129167X16500452BIB025’, ’000078247600007’);
[26] 26. K.-O. Stöhr and P. Viana, Weierstrass gap sequences and moduli varieties of trigonal curves, J. Pure Appl. Algebra81 (1992) 63-82. genRefLink(16, ’S0129167X16500452BIB026’, ’10.1016%252F0022-4049%252892%252990135-3’); genRefLink(128, ’S0129167X16500452BIB026’, ’A1992JG90300006’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.