×

zbMATH — the first resource for mathematics

Irreducibility of the moduli space of orthogonal instanton bundles on \(\mathbb{P}^n\). (English) Zbl 07176883
Summary: In order to obtain existence criteria for orthogonal instanton bundles on \(\mathbb{P}^n\), we provide a bijection between equivalence classes of orthogonal instanton bundles with no global sections and symmetric forms. Using such correspondence we are able to provide explicit examples of orthogonal instanton bundles with no global sections on \(\mathbb{P}^n\) and prove that every orthogonal instanton bundle with no global sections on \(\mathbb{P}^n\) and charge \(c\ge 2\) has rank \(r \le (n-1)c\). We also prove that when the rank \(r\) of the bundles reaches the upper bound, \( \mathcal{M}_{\mathbb{P}^n}^{\mathcal{O}}(c,r)\), the coarse moduli space of orthogonal instanton bundles with no global sections on \(\mathbb{P}^n\), with charge \(c\ge 2\) and rank \(r\), is affine, smooth, reduced and irreducible. Last, we construct Kronecker modules to determine the splitting type of the bundles in \(\mathcal{M}_{\mathbb{P}^n}^{\mathcal{O}}(c,r)\), whenever is non-empty.
MSC:
14D20 Algebraic moduli problems, moduli of vector bundles
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
Software:
Macaulay2
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abuaf, R.; Boralevi, A., Orthogonal bundles and skew-Hamiltonian matrices, Can. J. Math., 67, 5, 961-989 (2015) · Zbl 1333.14036
[2] Arrondo, E., Schwarzenberger bundles of arbitrary rank on the projective space, J. Lond. Math. Soc., 82, 697-716 (2010) · Zbl 1205.14018
[3] Atiyah, Mf; Drinfeld, Vg; Hitchin, Nj; Manin, Yi, Construction of instantons, Phys. Lett., 65A, 3, 185-187 (1977) · Zbl 0424.14004
[4] Atiyah, Mf; Hitchin, Nj; Singer, Im, Deformations of instantons, Proc. Natl. Acad. Sci., 74, 7, 2662-2663 (1977) · Zbl 0356.58011
[5] Atiyah, Mf; Ward, Rs, Instantons and algebraic geometry, Commun. Math. Phys., 55, 2, 117-124 (1977) · Zbl 0362.14004
[6] Barth, W., Irreducibility of the space of mathematical instanton bundles with rank \(2\) and \(c_2=4\), Math. Ann., 258, 81-106 (1981) · Zbl 0477.14014
[7] Bruzzo, U.; Markushevich, D.; Tikhomirov, A., Moduli of symplectic instanton vector bundles of higher rank on projective space \(\mathbb{P}^3\), Central Eur. J. Math., 10, 4, 1232-1245 (2012) · Zbl 1282.14020
[8] Bruzzo, U.; Markushevich, D.; Tikhomirov, A., Symplectic instanton bundles on \(\mathbb{P}^3\) and ’t Hooft instantons, Eur. J. Math., 2, 1, 73-86 (2016) · Zbl 1408.14040
[9] Coandă, I.; Tikhomirov, A.; Trautmann, G., Irreducibility and smoothness of the moduli space of mathematical \(5\)-instantons over \(\mathbb{P}^3\), Int. J. Math., 14, 1, 1-45 (2003) · Zbl 1059.14018
[10] Costa, L.; Hoffmann, N.; Miró-Roig, Rm; Schmitt, A., Rational families of instanton bundles on \(\mathbb{P}^{2n+1} \), Algebr. Geom., 02, 1-45 (2014)
[11] Costa, L.; Ottaviani, G., Nondegenerate multidimensional matrices and instanton bundles, Trans. Am. Math. Soc., 355, 1, 49-55 (2003) · Zbl 1031.14004
[12] Ellingsrud, G.; Strømme, A., Stable rank-\(2\) vector bundles on \(\mathbb{P}^3\) with \(c_1=0\) and \(c_2=3\), Math. Ann., 255, 123-135 (1981) · Zbl 0438.14009
[13] Farnik, L.; Frapporti, F.; Marchesi, S., On the non-existence of orthogonal instanton bundles on \(\mathbb{P}^{2N+ 1} \), Le Matematiche Catania, 2, 81-90 (2009) · Zbl 1200.14085
[14] Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
[15] Hartshorne, R., Stable vector bundles and instantons, Commun. Math. Phys., 59, 1, 1-15 (1978) · Zbl 0383.14006
[16] Henni, Aa; Jardim, M.; Martins, Rv, ADHM construction of perverse instanton sheaves, Glasgow Math. J., 57, 2, 285-321 (2015) · Zbl 1316.14024
[17] Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn., pp. 86-87. Cambridge (2010) · Zbl 1206.14027
[18] Jardim, M., Instanton sheaves on complex projective spaces, Collect. Math., 57, 69-91 (2005) · Zbl 1095.14040
[19] Jardim, M.; Marchesi, S.; Wißdorf, A., Moduli of autodual instanton bundles, Bull. Braz. Math. Soc., 47, 3, 823-843 (2016) · Zbl 1371.14017
[20] Jardim, M.; Verbitsky, M., Trihyperkähler reduction and instanton bundles on \(\mathbb{CP}{\mathbb{P}^3} \), Mathematica, 150, 11, 1836-1868 (2014) · Zbl 1396.14012
[21] Katsylo, Pi; Ottaviani, G., Regularity of the moduli space of instanton bundles \({\text{MI}}_{\mathbb{P}^3}(5)\), Transform. Groups, 8, 2, 147-158 (2003) · Zbl 1071.14016
[22] LePotier, J.: Sur l’espace de modules des fibré s de Yang et Mills, in Mathématiques et Physique, Seminaire de l’Ecole Normale Supérieure. Birkhäuser, 1979-1982, (1983)
[23] Miró-Roig, Rm; Orus-Lacort, Ja, On the smoothness of the moduli space of mathematical instanton bundles, Compos. Math., 105, 109-119 (1997) · Zbl 0878.14013
[24] Okonek, C.; Spindler, H., Mathematical instanton bundles on \(\mathbb{P}^{2n+1} \), J. Reine. Angew. Math, 364, 35-50 (1986) · Zbl 0568.14009
[25] Tikhomirov, A., Moduli of mathematical instanton vector bundles with odd \(c_2\) n projective space, Izv. Math., 76, 5, 991-1073 (2012) · Zbl 1262.14053
[26] Tikhomirov, A., Moduli of mathematical instanton vector bundles with even c projective space, Izv. Math., 77, 6, 1195-1223 (2013) · Zbl 1308.14045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.