zbMATH — the first resource for mathematics

Indirect adaptive hierarchical fuzzy sliding mode controller for a class of nonlinear systems. (English) Zbl 1361.93025
Summary: This study presents a novel indirect adaptive hierarchical fuzzy sliding mode controller for a class of high-order SISO nonlinear systems in normal form with unknown functions in the presence of bounded disturbance. The hierarchical fuzzy system is able to reduce the number of rules and parameters with respect to ordinary fuzzy systems. On-line tuning algorithm for consequent part parameters of fuzzy rules in different layer of hierarchical fuzzy system is derived using defined Lyapunov function. Two theorems are proved to show that the suggested adaptive schemes can achieve asymptotically stable tracking of a reference input with guarantee of the boundedsystem signals. One for unity control gain and the other for non-unity control gain. To show the effectiveness of the proposed method, control of three systems are considered in the simulations. The simulations results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic system.
93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI
[1] Wang, Indirect adaptive fuzzy sliding mode control: Part: Fuzzy switching, Fuzzy Sets and Systems 122 pp 21– (2001) · Zbl 0981.93040 · doi:10.1016/S0165-0114(99)00179-7
[2] Mansouri, Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems, ISA Transactions 56 pp 28– (2015) · doi:10.1016/j.isatra.2014.11.014
[3] Raju, Hierarchical fuzzy control, Int J Control 54 (5) pp 1201– (1991) · Zbl 0741.93001 · doi:10.1080/00207179108934205
[4] Wang, Universal approximation by hierarchical fuzzy systems, Fuzzy Set Syst 93 (2) pp 223– (1998) · Zbl 0948.93512 · doi:10.1016/S0165-0114(96)00197-2
[5] Labiod, Fuzzy adaptive control for a class of nonlinear systems with unknown control gain, Evolving Syst 3 pp 57– (2012) · doi:10.1007/s12530-011-9037-y
[6] Farivar, Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control, ISA Trans 51 (1) pp 50– (2012) · doi:10.1016/j.isatra.2011.07.002
[7] Kahkeshi, Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems, ISA Trans 52 (3) pp 342– (2013) · doi:10.1016/j.isatra.2013.01.004
[8] Labiod, Indirect adaptive fuzzy control for a class of uncertain nonlinear systems with unknown control direction, Int J of Fuzz Syst Appl 1 pp 903– (2011)
[9] Boulkroune, Indirect adaptive fuzzy control scheme based on observer for nonlinear systems: A novel SPR-filter approach, Neurocomputing 135 pp 378– (2014) · doi:10.1016/j.neucom.2013.12.011
[10] Li, Indirect adaptive fuzzy control for input and output constrained nonlinear systems using a barrier Lyapunov function, Int J Adapt Control 28 (2) pp 184– (2014) · Zbl 1330.93145 · doi:10.1002/acs.2410
[11] Hongyi, Adaptive sliding mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach, IEEE Transactions on Industrial Electronics 60 pp 8– (2013)
[12] Hung, Speed control of a hydraulic pressure coupling drive using an adaptive fuzzy sliding mode control, IEEE/ASME Transactions on Mechatronics 17 pp 5– (2012)
[13] Nechadi, A new robust adaptive fuzzy sliding mode power system stabilizer, Electrical Power and Energy Systems 42 pp 1– (2012) · doi:10.1016/j.ijepes.2012.03.032
[14] Armendáriza, Indirect hierarchical FCMAC control for the ball and plate system, Neurocomputing 73 (13-15) pp 2454– (2010)
[15] Joo, A method of converting a fuzzy system to a two-layered hierarchical fuzzy system and its run-time efficiency, IEEE Trans Fuzzy Syst 17 (1) pp 93– (2009) · doi:10.1109/TFUZZ.2008.2007570
[16] Hsum, A hierarchical structure of observer-based adaptive fuzzy-neural controller for MIMO systems, Fuzzy Set Syst 185 (1) pp 52– (2011) · Zbl 1238.93054 · doi:10.1016/j.fss.2011.06.001
[17] Emara, Robust robot control enhanced by a hierarchical adaptive fuzzy algorithm, Eng Appl Artif Intel 17 (2) pp 187– (2004) · doi:10.1016/j.engappai.2004.02.005
[18] Sun, Adaptive Fuzzy Predictive Control of Satellite Attitude Based on Hierarchical Fuzzy Systems, Intelligent System Design and Engineering Application (ISDEA), 2010 International Conference on pp 208– (2010) · doi:10.1109/ISDEA.2010.252
[19] Masmoudi, Optimal Control for Discrete Large Scale Nonlinear Systems Using Hierarchical Fuzzy Systems, Machine Learning and Computing (ICMLC), 2010 Second International Conference on pp 91– (2010) · doi:10.1109/ICMLC.2010.32
[20] Zhou, Intrusion Detection Model Based on Hierarchical Fuzzy Inference System, Information and Computing Science, 2009 ICIC ’09 Second International Conference on pp 144– (2009) · doi:10.1109/ICIC.2009.145
[21] Hu, Hierarchical fuzzy logic control for multiphase traffic intersection using evolutionary algorithms, Industrial Technology, 2009 ICIT 2009 IEEE International Conference on pp 1– (2009)
[22] Naghibi, Breast cancer classification based on advanced multi dimensional fuzzy neural network, J Med Syst 36 (5) pp 13– (2012) · doi:10.1007/s10916-011-9747-5
[23] Moreno-Armendáriz, Indirect hierarchical FCMAC control for the ball and plate system, Neurocomputing 73 pp 2454– (2010) · Zbl 05849201 · doi:10.1016/j.neucom.2010.03.023
[24] Mohammadzadeh, Two-mode indirect adaptive control approach for the synchronization of uncertain chaotic systems by the use of a hierarchical interval type-2 fuzzy neural network, Fuzzy Systems, IEEE Transactions on 22 pp 1301– (2014) · doi:10.1109/TFUZZ.2013.2291568
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.