×

Local hidden variables underpinning of entanglement and teleportation. (English) Zbl 1113.81024

Summary: Entangled states whose Wigner functions are non-negative may be viewed as being accounted for by local hidden variables (LHV). Recently, there were studies of Bell’s inequality violation (BIQV) for such states in conjunction with the well known theorem of Bell that precludes BIQV for theories that have LHV underpinning. We extend these studies to teleportation which is also based on entanglement. We investigate if, to what extent, and under what conditions may teleportation be accounted for via LHV theory. Our study allows us to expose the role of various quantum requirements. These are, e.g., the uncertainty relation among non-commuting operators, and the no-cloning theorem which forces the complete elimination of the teleported state at its initial port.

MSC:

81P68 Quantum computation
81P05 General and philosophical questions in quantum theory
81P20 Stochastic mechanics (including stochastic electrodynamics)
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Einstein A., Podolsky B., Rosen N., (1935). ”Can quantum-mechanical description of physical reality be considered complete?”. Phys. Rev. 47, 777 · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[2] Bell J.S., (1964). ”On the Einstein-Podolsky-Rosen paradox”. Physics 1, 195
[3] Bell J.S., (1966). ”On the problem of hidden variables in quantum theory”. Rev. Mod. Phys. 38, 447 · Zbl 0152.23605 · doi:10.1103/RevModPhys.38.447
[4] Bohm D., Quantum Theory (Prentice-Hall, Englewood Cliffs, NJ, 1951), Chap. 22.
[5] Gisin N., (1991). ”Bell’s inequality holds for all non-product states”. Phys. Lett. A 154, 201 · doi:10.1016/0375-9601(91)90805-I
[6] J. S. Bell, ”EPR correlations and EPW distributions,” in Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987). The first (i.e., prior to Bell) to note that the Wigner function of the maximally entangled state, the so-called Rosen’s (or EPR) state: {\(\psi\)}(q 1,q 2) {\(\delta\)}(q 1 2), viz. W(q 1,p 1,q 2,p 2) {\(\delta\)}(q 1 2){\(\delta\)}(p 1 + p 2), may be viewed as a statistical distribution for ”hidden variables” were A. M Cetto, L. de la Pena, and E. Santos, ”A Bell inequality involving position, momentum and energy,” Phys. Lett. A 113, 304 (1985). Some of the early discussion is given in the article by U. Leonhardt and J. A. Vaccaro, ”Quantum-optical Bell correlations in phase space,” in The Dilemma of Einstein, Podolsky and Rosen–60 Years Later (Institute of Physics Publishing, Bristol and Philadelphia, and The Israel Physical Society, Jerusalem, 1996).
[7] Wigner E.P., (1932). ”On the quantum correction for thermodynamic equilibrium”. Phys. Rev. 40, 749 · JFM 58.0948.07 · doi:10.1103/PhysRev.40.749
[8] K. Banaszek and K. Wodkiewicz, ”Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345 (1998); ”Testing quantum nonlocality in phase space,” Phys. Rev. Lett. 82, 2009 (1999). The interest in achieving BIQV for the EPR state is, of course, not just due to Bell’s claim noted above.
[9] Chen Z., Pan J., Hou G., Zhang Y., (2002). ”Maximal violation of Bell’s inequalities for continuous variable systems”. Phys. Rev. Lett. 88: 040406 · Zbl 1243.81028 · doi:10.1103/PhysRevLett.88.040406
[10] Gour G., Khanna F.C., Mann A., Revzen M., (2004). ”Optimization of Bell’s inequality violation for continuous variable systems”. Phys. Lett. A 324, 415 · Zbl 1123.81312 · doi:10.1016/j.physleta.2004.03.018
[11] Revzen M., Mello P.A., Mann A., Johansen L.M., (2005). ”Bell’s inequality violation with non-negative Wigner functions”. Phys. Rev. A 71: 022103 · Zbl 1227.81052 · doi:10.1103/PhysRevA.71.022103
[12] Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W., (1993). ”Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”. Phys. Rev. Lett. 70: 1895 · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[13] Vaidman L., (1994). ”Teleportation of quantum states”. Phys. Rev. A 49: 1473 · doi:10.1103/PhysRevA.49.1473
[14] Braunstein S.L., Kimble H.J., (1998). ”Teleportation of continuous quantum variables”. Phys. Rev. Lett. 80, 869 · doi:10.1103/PhysRevLett.80.869
[15] Bouwmeester D., Pan J.M., Mattle K., Eibl M., Weinfurther H., Zeilinger A., (1997). ”Experimental quantum teleportation”. Nature (London) 390, 575 · Zbl 1369.81006 · doi:10.1038/37539
[16] Furusawa A., Sorensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S., (1998). ”Unconditional quantum teleportation”. Science 282, 706 · doi:10.1126/science.282.5389.706
[17] Bowen W.P., Treps N., Buchler B.C., Schnabel R., Ralph T.C., Bachor H.A., Symul T., Lam P.K., (2003). ”Experimental investigation of continuous-variable quantum teleportation”. Phys. Rev. A 67: 032302 · doi:10.1103/PhysRevA.67.032302
[18] Zhang T.C., Goh K.W., Chou C.W., Lodahl P., Kimble H.J., (2003). ”Quantum teleportation of light beams”. Phys. Rev. A 67: 033802 · doi:10.1103/PhysRevA.67.033802
[19] Braunstein S.L., Fuchs C.A., Kimble H.J., van Loock P., (2001). ”Quantum versus classical domains for teleportation with continuous variables”. Phys. Rev. A 64: 022321 · doi:10.1103/PhysRevA.64.022321
[20] Grosshans F., Grangier P., (2001). ”Quantum cloning and teleportation criteria for continuous quantum variables”. Phys. Rev. A 64: 010301 · doi:10.1103/PhysRevA.64.010301
[21] Hudson R.L., (1974). ”When is the Wigner quasi-probability density non-negative?”. Rep. Math. Phys. 6, 249 · Zbl 0324.60018 · doi:10.1016/0034-4877(74)90007-X
[22] Schleich W., (2001). Quantum Optics in Phase Space. Wiley-VCH, Berlin · Zbl 0961.81136
[23] Mann A., Revzen M., (1993). ”Gaussian density matrices: quantum analogs of classical states”. Fortschr. Phys. 41, 431
[24] Englert B.-G., Wodkiewicz K., (2003). ”Tutorial notes on one-party and two-party gaussian states”. Int. J. Q. Inf. 1, 153 · Zbl 1067.81544 · doi:10.1142/S0219749903000206
[25] Shannon C.E., ”A mathematical theory of communication,” Bell Syst. Tech. J. 27, pp. 379–423 and 623–656 (1948). · Zbl 1154.94303
[26] von Neumann J., (1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton · Zbl 0064.21503
[27] Popper K.R., (1959). ”The propensity interpretation of probability”. Br. J. Philos. Sci. 10, 25 · Zbl 0083.24104 · doi:10.1093/bjps/X.37.25
[28] W. K. Wootters, ”A Wigner function formulation of finite-state quantum mechanics,” Ann. Phys. (N.Y.) 176, 1 (1987). For a detailed review on the progress in quantum information based on continuous quantum variables, with emphasis on quantum optical implementations in terms of the quadrature amplitudes of the electromagnetic field, see S. L. Braunstein and P. van Loock, ”Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513 (2005).
[29] Baker G.A., (1958). ”Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space”. Phys. Rev. 109: 2198 · doi:10.1103/PhysRev.109.2198
[30] Hillery M., Oconnell R.F., Scully M.O., Wigner E.P., (1984). ”Distribution functions in physics: Fundamentals”. Phys. Rep. 106, 121 · doi:10.1016/0370-1573(84)90160-1
[31] Duan L.M, Giedke G., Cirac J.I., Zoller P., (2000). ”Inseparability criterion for continuous variable systems”. Phys. Rev. Lett. 84: 2722 · Zbl 1004.81503 · doi:10.1103/PhysRevLett.84.2722
[32] Simon R., (2000). ”Peres-Horodecki separability criterion for continuous variable systems”. Phys. Rev. Lett. 84: 2726 · doi:10.1103/PhysRevLett.84.2726
[33] Wootters W.K., Zurek W.H., (1982). ”A single quantum cannot be cloned”. Nature 299, 802 · Zbl 1369.81022 · doi:10.1038/299802a0
[34] Dieks D., (1982). ”Communication by EPR devices”. Phys. Lett. A 92, 271 · doi:10.1016/0375-9601(82)90084-6
[35] Barnum H., Caves C.M., Fuchs C.A., Jozsa R., Schumacher B., (1996). ”Noncommuting mixed states cannot be broadcast”. Phys. Rev. Lett. 76: 2818 · doi:10.1103/PhysRevLett.76.2818
[36] Daffertshofer A., Plastino A.R., Plastino A., (2002). ”Classical no-cloning theorem”. Phys. Rev. Lett. 88: 210601 · doi:10.1103/PhysRevLett.88.210601
[37] We ignore the practical difficulty of realizing the pure EPR state. Its realization requires an unbounded energy resource.
[38] Peres A., (1996). ”Separability criterion for density matrices”. Phys. Rev. Lett. 77: 1413 · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[39] S. L. Braunstein, private communication.
[40] Koniorczyk M., Kiss T., Janszky J., (2001). ”Teleportation: from probability distributions to quantum states”. J. Phys. A 34: 6949 · Zbl 0987.81017 · doi:10.1088/0305-4470/34/35/320
[41] Mor T., (2006). ”On classical teleportation and classical nonlocality”. Int. J. Quant. Inf. 4, 161 · Zbl 1090.81018 · doi:10.1142/S021974990600175X
[42] Caves C.M., Wodkiewicz K., (2004). ”Classical phase-space descriptions of continuous-variable teleportation”. Phys. Rev. Lett. 93: 040506 · doi:10.1103/PhysRevLett.93.040506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.