×

Maximum recoverable work in linear thermoelectromagnetism. (English) Zbl 1262.78001

Nonlinear Oscil., N.Y. 9, No. 3, 281-311 (2006) and Nelinijni Kolyvannya 9, No. 3, 287-319 (2006).
Summary: We give a general closed expression for the minimum free energy in terms of Fourier-transformed quantities for a thermoelectromagnetic conductor with memory effects for the electric current density and the heat flux in the case where the integrated histories of the electric field and of the temperature gradient are chosen to characterize the states of the material. An equivalent formulation is obtained and applied to the discrete spectrum model material response.

MSC:

78A25 Electromagnetic theory (general)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] G. Amendola and A. Manes, ”Minimum free energy in linear thermoelectromagnetism,” Quart. Appl. Math., 63, No. 4, 645–672 (2005). · Zbl 1087.74026
[2] G. Gentili, ”Thermodynamic potentials for electromagnetic fields in the ionosphere,” Int. J. Eng. Sci., 33, No. 11, 1561–1575 (1995). · Zbl 0899.76383
[3] M. E. Gurtin and A. C. Pipkin, ”A general theory of heat conduction with finite wave speeds,” Arch. Ration. Mech. Anal., 31, 113–126 (1968). · Zbl 0164.12901
[4] C. Cattaneo, ”Sulla conduzione del calore,” Atti Semin. Mat. Fis. Univ. Modena, 3, 83–101 (1948). · Zbl 0035.26203
[5] B. D. Coleman and E. H. Dill, ”On the thermodynamics of electromagnetic fields in materials with memory,” Arch. Ration. Mech. Anal., 41, 132–162 (1971).
[6] B. D. Coleman and E. H. Dill, ”Thermodynamic restrictions on the constitutive equations of electromagnetic theory,” ZAMP, 22, 691–702 (1971). · Zbl 0218.35072
[7] G. Amendola, ”Linear stability for a thermoelectromagnetic material with memory,” Quart. Appl. Math., 59, No. 1, 67–84 (2002). · Zbl 1027.35136
[8] J. M. Golden, ”Free energy in the frequency domain: the scalar case,” Quart. Appl. Math., 58, No. 1, 127–150 (2000). · Zbl 1032.74017
[9] G. Gentili, ”Maximum recoverable work, minimum free energy and state space in linear viscoelasticity, ” Quart. Appl. Math., 60, No. 1, 153–182 (2002). · Zbl 1069.74009
[10] L. Deseri, G. Gentili, and J. M. Golden, ”On the minimal free energy and the Saint-Venant principle in linear viscoelasticity,” in: M. Fabrizio, B. Lazzari, and A. Morro (editors), Mathematical Models and Methods for Smart Materials, World Scientific, Singapore (2002). · Zbl 1103.74028
[11] M. Fabrizio and J. M. Golden, ”Maximum and minimum free energies for a linear viscoelastic material,” Quart. Appl. Math., 60, No. 2, 341–381 (2002). · Zbl 1069.74008
[12] M. Fabrizio, C. Giorgi, and A. Morro, ”Free energies and dissipation properties for systems with memory,” Arch. Ration. Mech. Anal., 125, 341–373 (1994). · Zbl 0806.73006
[13] B. D. Coleman and D. R. Owen, ”A mathematical foundation of thermodynamics,” Arch. Ration. Mech. Anal., 54, 1–104 (1974). · Zbl 0306.73004
[14] M. Fabrizio and A. Morro, Electromagnetism of Continuous Media, Oxford University Press, Oxford (2003). · Zbl 1027.78001
[15] M. Fabrizio and A. Morro, ”Thermodynamics of electromagnetic isothermal systems with memory,” J. Nonequil. Thermodyn., 22, 110–128 (1997). · Zbl 0889.73004
[16] M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia (1992). · Zbl 0753.73003
[17] G. Amendola, ”The minimum free energy for an electromagnetic conductor,” Appl. Anal., 84, No. 1, 67–87 (2005). · Zbl 1069.78003
[18] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen (1953). · Zbl 0051.33203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.