×

Maximum recoverable work for a rigid heat conductor with memory. (English) Zbl 1206.80004

The linearized form of the Second Law of Thermodynamics and some fundamental relations are examined in order to study the effects of the internal energy in the evaluation of the thermal work. An equivalence relation between states can be defined in terms of the internal energy and heat flux or in terms of the work; the coincidence is proved. The main results of this paper are two equivalent expressions of the minimum free energy for a rigid heat conductor endowed with memory effects. The two formulae are derived in terms of Fourier-transformed quantities. Applying one of them, the case of a discrete spectrum model is solved.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amendola, G.: Equivalent histories, states and a variational problem for a rigid linear heat conductor with memory. Int. J. Eng. Sci. 43, 681–696 (2005) · Zbl 1211.74009
[2] Amendola, G., Bosello, C.A., Fabrizio, M.: Maximum recoverable work and pseudo-free energies for a rigid heat conductor. Nonlinear Oscil. 10(1), 7–25 (2007) · Zbl 1268.80004
[3] Breuer, S., Onat, E.T.: On recoverable work in linear viscoelasticity. Z. Angew. Math. Phys. 15, 12–21 (1964) · Zbl 0123.40802
[4] Breuer, S., Onat, E.T.: On the determination of free energy in linear viscoelastic solids. Z. Angew. Math. Phys. 15, 184–191 (1964) · Zbl 0123.40802
[5] Cattaneo, C.: Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena 3, 83–101 (1948) · Zbl 0035.26203
[6] Coleman, B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–46 (1964)
[7] Coleman, B.D., Owen, R.D.: A mathematical foundation for thermodynamics. Arch. Ration. Mech. Anal. 54, 1–104 (1974) · Zbl 0306.73004
[8] Day, W.A.: Reversibility, recoverable work and free energy in linear viscoelasticity. Q. J. Mech. Appl. Math. 23, 1–15 (1970) · Zbl 0219.73040
[9] Deseri, L., Fabrizio, M., Golden, J.M.: The concept of a minimal state in viscoelasticity: new free energies and applications to PDEs. Arch. Ration. Mech. Anal. 181(1), 43–96 (2006) · Zbl 1152.74323
[10] Fabrizio, M., Golden, J.M.: Maximum and minimum free energies for a linear viscoelastic material. Q. Appl. Math. LX(2), 341–381 (2002) · Zbl 1069.74008
[11] Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992) · Zbl 0753.73003
[12] Fabrizio, M., Giorgi, C., Morro, A.: Free energies and dissipation properties for systems with memory. Arch. Ration. Mech. Anal. 125, 341–373 (1994) · Zbl 0806.73006
[13] Fabrizio, M., Gentili, G., Reynolds, D.W.: On rigid heat conductors with memory. Int. J. Eng. Sci. 36, 765–782 (1998) · Zbl 1210.80007
[14] Gentili, G.: Maximum recoverable work, minimum free energy and state space in linear viscoelasticity. Q. Appl. Math. LX(1), 153–182 (2002) · Zbl 1069.74009
[15] Gentili, G., Giorgi, C.: Thermodynamic properties and stability for the heat flux equation with linear memory. Q. Appl. Math. 51, 343–362 (1993) · Zbl 0780.45011
[16] Gentili, G., Giorgi, C.: Mathematical models for phase transition in materials with memory. In: Colli, P., Kenmchi, N., Sprekels, J. (eds.) Dissipative Phase Transitions. Ser. Adv. Mat. Appl. Scientific, vol. 71, pp. 115–140. World Scientific, Singapore (2006) · Zbl 1105.35125
[17] Golden, J.M.: Free energy in the frequency domain: the scalar case. Q. Appl. Math. LVIII(1), 127–150 (2000) · Zbl 1032.74017
[18] Graffi, D.: Sull’espressione analitica di alcune grandezze termodinamiche nei materiali con memoria. Rend. Semin. Mat. Univ. Padova 68, 17–29 (1982) · Zbl 0535.73029
[19] Graffi, D.: Ancora sull’espressione dell’energia libera nei materiali con memoria. Atti Accad. Sci. Torino 120, 111–124 (1986)
[20] Graffi, D., Fabrizio, M.: Sulla nozione di stato per materiali viscoelastici di tipo ”rate”. Atti Accad. Naz. Lincei 83, 201–208 (1990)
[21] Graffi, D., Fabrizio, M.: Non unicità dell’energia libera per materiali viscoelastici. Atti Accad. Naz. Lincei 83, 209–214 (1990)
[22] Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968) · Zbl 0164.12901
[23] McCarty, M.: Constitutive equations for thermomechanical materials with memory. Int. J. Eng. Sci. 8, 467–474 (1970) · Zbl 0212.58303
[24] Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953) · Zbl 0051.33203
[25] Noll, W.: A new mathematical theory of simple materials. Arch. Ration. Mech. Anal. 48, 1–50 (1972) · Zbl 0271.73006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.