×

Feynman rules for the rational part of the electroweak 1-loop amplitudes. (English) Zbl 1269.81214

Summary: We present the complete set of Feynman rules producing the rational terms of kind \(R_{2}\) needed to perform any 1-loop calculation in the Electroweak Standard Model. Our results are given both in the ’t Hooft-Veltman and in the Four Dimensional Helicity regularization schemes. We also verified, by using both the ’t Hooft-Feynman gauge and the Background Field Method, a huge set of Ward identities -up to 4-points- for the complete rational part of the Electroweak amplitudes. This provides a stringent check of our results and, as a by-product, an explicit test of the gauge invariance of the Four Dimensional Helicity regularization scheme in the complete Standard Model at 1-loop. The formulae presented in this paper provide the last missing piece for completely automatizing, in the framework of the OPP method, and in any other approach using 4-dimensional numerators, the 1-loop calculations in the \(SU(3) \times SU(2) \times U(1)\) Standard Model.

MSC:

81V22 Unified quantum theories
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp → ttbb, JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES]. · doi:10.1088/1126-6708/2009/09/109
[2] R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W+3jet production, JHEP04 (2009) 077 [arXiv:0901.4101] [SPIRES]. · doi:10.1088/1126-6708/2009/04/077
[3] C.F. Berger et al., Precise predictions for W + 3 jet production at Hadron colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [SPIRES]. · doi:10.1103/PhysRevLett.102.222001
[4] T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP06 (2008) 082 [arXiv:0804.0350] [SPIRES]. · doi:10.1088/1126-6708/2008/06/082
[5] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [SPIRES]. · doi:10.1088/1126-6708/2008/06/030
[6] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067 · doi:10.1016/j.nuclphysb.2006.11.012
[7] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [SPIRES]. · Zbl 1178.81202 · doi:10.1016/j.nuclphysb.2005.07.014
[8] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett.70 (1993) 2677 [hep-ph/9302280] [SPIRES]. · doi:10.1103/PhysRevLett.70.2677
[9] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys.B 437 (1995) 259 [hep-ph/9409393] [SPIRES]. · doi:10.1016/0550-3213(94)00542-M
[10] Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e+e−to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [SPIRES]. · doi:10.1016/S0550-3213(97)00703-7
[11] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [SPIRES]. · doi:10.1088/1126-6708/2009/09/106
[12] F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett.B 358 (1995) 332 [hep-ph/9507237] [SPIRES].
[13] C.G. Papadopoulos and M. Worek, Multi-parton cross sections at hadron colliders, Eur. Phys. J.C 50 (2007) 843 [hep-ph/0512150] [SPIRES]. · doi:10.1140/epjc/s10052-007-0246-2
[14] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [SPIRES]. · doi:10.1088/1126-6708/2003/07/001
[15] A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun.180 (2009) 1941 [arXiv:0710.2427] [SPIRES]. · doi:10.1016/j.cpc.2009.04.023
[16] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [SPIRES].
[17] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [SPIRES]. · Zbl 1196.81234 · doi:10.1016/j.nuclphysb.2009.07.023
[18] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [SPIRES]. · Zbl 1246.81170 · doi:10.1088/1126-6708/2008/04/049
[19] Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev.D 71 (2005) 105013 [hep-th/0501240] [SPIRES].
[20] Z. Bern, L.J. Dixon and D.A. Kosower, The last of the finite loop amplitudes in QCD, Phys. Rev.D 72 (2005) 125003 [hep-ph/0505055] [SPIRES].
[21] Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev.D 73 (2006) 065013 [hep-ph/0507005] [SPIRES].
[22] C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev.D 74 (2006) 036009 [hep-ph/0604195] [SPIRES].
[23] A. van Hameren, Multi-gluon one-loop amplitudes using tensor integrals, JHEP07 (2009) 088 [arXiv:0905.1005] [SPIRES]. · doi:10.1088/1126-6708/2009/07/088
[24] G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [SPIRES]. · doi:10.1088/1126-6708/2008/05/004
[25] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES]. · doi:10.1088/1126-6708/2009/04/072
[26] Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys.B 411 (1994) 397 [hep-ph/9305239] [SPIRES]. · doi:10.1016/0550-3213(94)90456-1
[27] S. Catani, M.H. Seymour and Z. Trócsányi, Regularization scheme independence and unitarity in QCD cross sections, Phys. Rev.D 55 (1997) 6819 [hep-ph/9610553] [SPIRES].
[28] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [SPIRES].
[29] G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP07 (2007) 085 [arXiv:0704.1271] [SPIRES]. · doi:10.1088/1126-6708/2007/07/085
[30] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES]. · doi:10.1088/1126-6708/2008/03/042
[31] T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP02 (2007) 013 [hep-ph/0609054] [SPIRES]. · doi:10.1088/1126-6708/2007/02/013
[32] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [SPIRES]. · Zbl 1271.81172
[33] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[34] J.A.M. Vermaseren, The FORM project, Nucl. Phys. Proc. Suppl.183 (2008) 19 [arXiv:0806.4080] [SPIRES]. · doi:10.1016/j.nuclphysbps.2008.09.076
[35] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys.41 (1993) 307 [arXiv:0709.1075] [SPIRES].
[36] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [SPIRES]. · Zbl 0994.81082 · doi:10.1016/S0010-4655(01)00290-9
[37] A. Denner, G. Weiglein and S. Dittmaier, Application of the background field method to the electroweak standard model, Nucl. Phys.B 440 (1995) 95 [hep-ph/9410338] [SPIRES]. · doi:10.1016/0550-3213(95)00037-S
[38] G. Passarino and M.J.G. Veltman, One loop corrections for e+e−annihilation into μ+μ−in the Weinberg model, Nucl. Phys.B 160 (1979) 151 [SPIRES]. · doi:10.1016/0550-3213(79)90234-7
[39] A. Denner, G. Weiglein and S. Dittmaier, Gauge invariance of green functions: Background field method versus pinch technique, Phys. Lett.B 333 (1994) 420 [hep-ph/9406204] [SPIRES].
[40] A. Denner, S. Dittmaier and G. Weiglein, Green functions from a gauge-invariant effective action for the electroweak standard model, Nucl. Phys. Proc. Suppl.37B (1994) 87 [hep-ph/9406400] [SPIRES]. · doi:10.1016/0920-5632(94)90664-5
[41] A. Denner, S. Dittmaier and G. Weiglein, Gauge invariance, gauge parameter independence and properties of Green functions, hep-ph/9505271 [SPIRES].
[42] A. Denner, S. Dittmaier and G. Weiglein, The background-field formulation of the electroweak standard model, Acta Phys. Polon.B 27 (1996) 3645 [hep-ph/9609422] [SPIRES].
[43] D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Clarendon, Oxford, U.K. (1999) pg. 685 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.