×

zbMATH — the first resource for mathematics

Projective synchronization for coupled partially linear complex-variable systems with known parameters. (English) Zbl 1366.34072
Summary: The passivity theory is used to achieve projective synchronization in coupled partially linear complex-variable systems with known parameters. By using this theory, the control law is thus adopted to make state vectors asymptotically synchronized up to a desired scaling factor. This paper deals with sending different large messages which include image and voice signals. The theoretical foundation of the projective synchronization based on the passivity theory is exploited for application to secure communications. The numerical simulations of secure communication are used to send large message, an image and sound (voice) signal. The errors are controlled to zero that show the agreement between theoretical and numerical simulations results.

MSC:
34D06 Synchronization of solutions to ordinary differential equations
94A14 Modulation and demodulation in information and communication theory
34H10 Chaos control for problems involving ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pecora, Synchronization in chaotic systems, Physical Review Letters 64 pp 821– (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[2] Mahmoud, Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems, Nonlinear Dynamics 61 pp 141– (2010) · Zbl 1204.93096 · doi:10.1007/s11071-009-9637-2
[3] Mahmoud, Lag synchronization of hyperchaotic complex nonlinear systems, Nonlinear Dynamics 67 pp 1613– (2012) · Zbl 1243.93044 · doi:10.1007/s11071-011-0091-6
[4] Mahmoud, Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters, Journal of The Franklin Institute 349 pp 1247– (2012) · Zbl 1273.93007 · doi:10.1016/j.jfranklin.2012.01.010
[5] Ray, Effect of noise on generalized synchronization: an experimental perspective, ASME Journal of Computational and Nonlinear Dynamics 8 pp 031003– (2013) · doi:10.1115/1.4007445
[6] Jia, Projective synchronization of a new hyperchaotic Lorenz system, Physical Review Letters 370 pp 40– (2007) · Zbl 1209.93105 · doi:10.1016/j.physleta.2007.05.028
[7] Mainieri, Projective synchronization in three-dimensional chaotic systems, Physical Review Letters 82 pp 3042– (1999) · doi:10.1103/PhysRevLett.82.3042
[8] Wu, Hyperchaotic secure communication via generalized function projective synchronization, Nonlinear Analysis: Real World Applications 12 pp 1288– (2011) · Zbl 1203.94128 · doi:10.1016/j.nonrwa.2010.09.026
[9] Li, A secure communication scheme using projective chaos synchronization, Chaos, Solitons & Fractals 22 pp 477– (2004) · Zbl 1060.93530 · doi:10.1016/j.chaos.2004.02.019
[10] Wu, Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication, Nonlinear Analysis: Real World Applications 13 pp 1441– (2012) · Zbl 1239.94003 · doi:10.1016/j.nonrwa.2011.11.008
[11] Du, Function projective synchronization in coupled chaotic systems, Nonlinear Analysis: Real World Applications 11 pp 705– (2010) · Zbl 1181.37039 · doi:10.1016/j.nonrwa.2009.01.016
[12] Li, Stability criterion for projective synchronization in three-dimensional chaotic systems, Physical Review Letters 282 pp 175– (2001) · Zbl 0983.37036 · doi:10.1016/S0375-9601(01)00185-2
[13] Mahmoud, On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications, Physica Scripta 87 pp 055002– (2013) · Zbl 1278.93133 · doi:10.1088/0031-8949/87/05/055002
[14] Hu, Hybrid projective synchronization in a chaotic complex nonlinear system, Mathematics and Computers in Simulation 79 pp 449– (2008) · Zbl 1151.93017 · doi:10.1016/j.matcom.2008.01.047
[15] Wu, Complex projective synchronization in coupled chaotic complex dynamical systems, Nonlinear Dynamics 69 pp 771– (2012) · Zbl 1253.93060 · doi:10.1007/s11071-011-0303-0
[16] Hu, Impulsive control of projective synchronization in chaotic systems, Physical Review Letters 372 pp 3228– (2008) · Zbl 1220.34079 · doi:10.1016/j.physleta.2008.01.054
[17] Li, Projective synchronization of chaotic system using backstepping control, Chaos, Solitons & Fractals 29 pp 490– (2006) · Zbl 1147.37324 · doi:10.1016/j.chaos.2005.08.029
[18] Willems, Dissipative dynamical systems part I: general theory, Archive for Rational Mechanics and Analysis 45 pp 321– (1972) · Zbl 0252.93002 · doi:10.1007/BF00276493
[19] Byrnes, Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems, IEEE Transactions on Automatic Control 36 pp 1228– (1991) · Zbl 0758.93007 · doi:10.1109/9.100932
[20] Mahmoud, Lag synchronization of hyperchaotic complex systems via passive control, Applied Mathematics & Information Sciences 7 pp 1429– (2013) · Zbl 1269.93042 · doi:10.12785/amis/070422
[21] Mahmoud, Controlling hyperchaotic complex systems with unknown parameters based on adaptive passive method, Chinese Physics B 22 pp 060508, 9 pages– (2013) · doi:10.1088/1674-1056/22/6/060508
[22] Wen, Passive equivalence of chaos in Lorenz system, IEEE Transactions on Circuits and Systems I 46 pp 876– (1999) · doi:10.1109/81.774240
[23] Wang, Passive control of a 4-scroll chaotic system, Chinese Physics 16 pp 946– (2007) · doi:10.1088/1009-1963/16/4/015
[24] Kolumbán, The role of synchronization in digital communication using chaos, IEEE Transactions on Circuits and Systems I 44 pp 927– (1997) · doi:10.1109/81.633882
[25] Zhang, Self-time-delay synchronization of time-delay coupled complex chaotic system and its applications to communication, Journal of Modern Physics C 25 pp 1350102, 13 pag– (2014) · doi:10.1142/S0129183113501027
[26] Zhang, Complex function projective synchronization of complex chaotic system and its applications in secure communication, Nonlinear Dynamics 76 pp 1087– (2014) · Zbl 1306.94072 · doi:10.1007/s11071-013-1192-1
[27] Mahmoud, Passive control of n-dimensional chaotic complex nonlinear systems, Journal of Vibration and Control 19 pp 1061– (2013) · Zbl 1358.34069 · doi:10.1177/1077546312439430
[28] Seron, Nonlinear adaptive control of feedback passive systems, Automatica 31 pp 1053– (1995) · Zbl 0833.93033 · doi:10.1016/0005-1098(95)00004-G
[29] Isidori, Nonlinear Control Systems: An Introduction (1989) · Zbl 0569.93034 · doi:10.1007/978-3-662-02581-9
[30] Mahmoud, Dynamics and synchronization of new hyperchaotic complex Lorenz system, Mathematical and Computer Modelling 55 pp 1951– (2012) · Zbl 1255.93102 · doi:10.1016/j.mcm.2011.11.053
[31] Wei, Controlling chaos in space-clamped FitzHugh-Nagumo neuron by adaptive passive method, Nonlinear Analysis: Real World Applications 11 pp 1752– (2010) · Zbl 1188.93045 · doi:10.1016/j.nonrwa.2009.03.029
[32] Jiang, A passification approach to adaptive nonlinear stabilization, Systems & Control Letters 28 pp 73– (1996) · Zbl 0877.93120 · doi:10.1016/0167-6911(96)00010-2
[33] Zhang, Full state hybrid projective synchronization and parameters identification for uncertain chaotic (hyperchaotic) complex systems, Journal of Computational and Nonlinear Dynamics 9 (2) pp 021009, 9 pages– (2013) · doi:10.1115/1.4025475
[34] Zhang, Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos, Chinese Physics B 22 pp 120505,11 pages– (2013) · doi:10.1088/1674-1056/22/12/120505
[35] Mahmoud, Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems, Mathematical Methods in the Applied Sciences 37 pp 321– (2014) · Zbl 1288.34045 · doi:10.1002/mma.2793
[36] Mahmoud, Complex modified projective synchronization of two chaotic complex nonlinear systems, Nonlinear Dynamics 73 pp 2231– (2013) · Zbl 1281.34074 · doi:10.1007/s11071-013-0937-1
[37] Byrnes, Local stabilization of minimum phase nonlinear systems, Systems & Control Letters 11 pp 9– (1988) · Zbl 0649.93030 · doi:10.1016/0167-6911(88)90105-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.