×

Multi-loop open string amplitudes and their field theory limit. (English) Zbl 1342.83400

Summary: We study the field theory limit of multi-loop (super)string amplitudes, with the aim of clarifying their relationship to Feynman diagrams describing the dynamics of the massless states. We propose an explicit map between string moduli around degeneration points and Schwinger proper-times characterizing individual Feynman diagram topologies. This makes it possible to identify the contribution of each light string state within the full string amplitude and to extract the field theory Feynman rules selected by (covariantly quantized) string theory. The connection between string and field theory amplitudes also provides a concrete tool to clarify ambiguities related to total derivatives over moduli space: in the superstring case, consistency with the field theory results selects a specific prescription for integrating over supermoduli. In this paper, as an example, we focus on open strings supported by parallel D-branes, and we present two-loop examples drawn from bosonic and RNS string theories, highlighting the common features between the two setups.

MSC:

83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V. Alessandrini and D. Amati, Properties of dual multiloop amplitudes, Nuovo Cim. A 4 (1971) 793 [INSPIRE]. · doi:10.1007/BF02731520
[2] E.P. Verlinde and H.L. Verlinde, Multiloop calculations in covariant superstring theory, Phys. Lett. B 192 (1987) 95 [INSPIRE].
[3] E. D’Hoker and D. Phong, The geometry of string perturbation theory, Rev. Mod. Phys.60 (1988) 917 [INSPIRE]. · doi:10.1103/RevModPhys.60.917
[4] E. D’Hoker and D. Phong, Lectures on two loop superstrings, Conf. Proc.C 0208124 (2002) 85 [hep-th/0211111] [INSPIRE].
[5] E. Witten, Superstring perturbation theory revisited, arXiv:1209.5461 [INSPIRE]. · Zbl 1421.81101
[6] J. Scherk, Zero-slope limit of the dual resonance model, Nucl. Phys. B 31 (1971) 222 [INSPIRE]. · doi:10.1016/0550-3213(71)90227-6
[7] J.-L. Gervais and A. Neveu, Feynman rules for massive gauge fields with dual diagram topology, Nucl. Phys. B 46 (1972) 381 [INSPIRE]. · doi:10.1016/0550-3213(72)90071-5
[8] M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE]. · doi:10.1016/0550-3213(88)90001-6
[9] Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE]. · doi:10.1016/0550-3213(92)90134-W
[10] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE]. · doi:10.1103/PhysRevLett.70.2677
[11] Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].
[12] P. Di Vecchia, L. Magnea, A. Lerda, R. Russo and R. Marotta, String techniques for the calculation of renormalization constants in field theory, Nucl. Phys.B 469 (1996) 235 [hep-th/9601143] [INSPIRE]. · doi:10.1016/0550-3213(96)00141-1
[13] A. Frizzo, L. Magnea and R. Russo, Scalar field theory limits of bosonic string amplitudes, Nucl. Phys. B 579 (2000) 379 [hep-th/9912183] [INSPIRE]. · Zbl 1071.81563 · doi:10.1016/S0550-3213(00)00200-5
[14] A. Frizzo, L. Magnea and R. Russo, Systematics of one loop Yang-Mills diagrams from bosonic string amplitudes, Nucl. Phys. B 604 (2001) 92 [hep-ph/0012129] [INSPIRE]. · Zbl 0983.81076 · doi:10.1016/S0550-3213(01)00187-0
[15] Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE]. · doi:10.1016/0550-3213(91)90567-H
[16] R. Metsaev and A.A. Tseytlin, On loop corrections to string theory effective actions, Nucl. Phys. B 298 (1988) 109 [INSPIRE]. · doi:10.1016/0550-3213(88)90306-9
[17] C. Bachas and M. Porrati, Pair creation of open strings in an electric field, Phys. Lett. B 296 (1992) 77 [hep-th/9209032] [INSPIRE].
[18] L. Magnea, R. Russo and S. Sciuto, Two-loop Euler-Heisenberg effective actions from charged open strings, Int. J. Mod. Phys. A 21 (2006) 533 [hep-th/0412087] [INSPIRE]. · Zbl 1089.81034
[19] R. Russo and S. Sciuto, The twisted open string partition function and Yukawa couplings, JHEP04 (2007) 030 [hep-th/0701292] [INSPIRE]. · doi:10.1088/1126-6708/2007/04/030
[20] G.V. Dunne, Heisenberg-Euler effective lagrangians: basics and extensions, hep-th/0406216 [INSPIRE]. · Zbl 1081.81116
[21] L. Álvarez-Gaumé, C. Gomez, G.W. Moore and C. Vafa, Strings in the operator formalism, Nucl. Phys. B 303 (1988) 455 [INSPIRE]. · doi:10.1016/0550-3213(88)90391-4
[22] P. Di Vecchia et al., N -point g-loop vertex for a free bosonic theory with vacuum charge q, Nucl. Phys. B 322 (1989) 317 [INSPIRE]. · doi:10.1016/0550-3213(89)90419-7
[23] L. Álvarez-Gaumé, C. Gomez, P.C. Nelson, G. Sierra and C. Vafa, Fermionic strings in the operator formalism, Nucl. Phys. B 311 (1988) 333 [INSPIRE]. · doi:10.1016/0550-3213(88)90065-X
[24] Z. Bern and D.C. Dunbar, A mapping between Feynman and string motivated one loop rules in gauge theories, Nucl. Phys. B 379 (1992) 562 [INSPIRE]. · doi:10.1016/0550-3213(92)90135-X
[25] E. Witten, More on superstring perturbation theory, arXiv:1304.2832 [INSPIRE]. · Zbl 1421.81102
[26] E. Witten, Notes on super Riemann surfaces and their moduli, arXiv:1209.2459 [INSPIRE]. · Zbl 1423.32012
[27] E.J. Martinec, Conformal field theory on a (super)riemann surface, Nucl. Phys. B 281 (1987) 157 [INSPIRE]. · doi:10.1016/0550-3213(87)90252-5
[28] A. Neveu and P.C. West, Neveu-Schwarz excited string scattering: a superconformal group computation, Phys. Lett.B 200 (1988) 275 [INSPIRE].
[29] P. Di Vecchia, K. Hornfeck, M. Frau, A. Lerda and S. Sciuto, N -string, g-loop vertex for the fermionic string, Phys. Lett. B 211 (1988) 301 [INSPIRE].
[30] K. Hornfeck, Three reggeon light cone vertex of the Neveu-Schwarz string, Nucl. Phys. B 293 (1987) 189 [INSPIRE]. · doi:10.1016/0550-3213(87)90068-X
[31] P. Di Vecchia, M. Frau, A. Lerda and S. Sciuto, A simple expression for the multiloop amplitude in the bosonic string, Phys. Lett. B 199 (1987) 49 [INSPIRE].
[32] R. Russo and S. Sciuto, Twisted determinants on higher genus Riemann surfaces, Nucl. Phys. B 669 (2003) 207 [hep-th/0306129] [INSPIRE]. · Zbl 1031.81045 · doi:10.1016/j.nuclphysb.2003.07.016
[33] P. Di Vecchia, L. Magnea, A. Lerda, R. Marotta and R. Russo, Two loop scalar diagrams from string theory, Phys. Lett. B 388 (1996) 65 [hep-th/9607141] [INSPIRE].
[34] G. Cristofano, F. Nicodemi and R. Pettorino, Covariant basic operators in bosonic string theory, Int. J. Mod. Phys. A 4 (1989) 857 [INSPIRE].
[35] J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (2005). · Zbl 1075.81054
[36] J.M. Pawlowski, M.G. Schmidt and J.-H. Zhang, On the Yang-Mills two-loop effective action with wordline methods, Phys. Lett. B 677 (2009) 100 [arXiv:0812.0008] [INSPIRE].
[37] L. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE]. · doi:10.1016/0550-3213(81)90371-0
[38] P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE]. · doi:10.1016/0550-3213(73)90223-X
[39] C.B. Thorn, A world sheet description of planar Yang-Mills theory, Nucl. Phys. B 637 (2002) 272 [Erratum ibid.B 648 (2003) 457] [hep-th/0203167] [INSPIRE]. · Zbl 0996.81055 · doi:10.1016/S0550-3213(02)00461-3
[40] T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].
[41] C. Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043] [INSPIRE].
[42] M. Billó, P. Di Vecchia and D. Cangemi, Boundary states for moving D-branes, Phys. Lett.B 400 (1997) 63 [hep-th/9701190] [INSPIRE].
[43] Y. Okawa and T. Yoneya, Multibody interactions of D-particles in supergravity and matrix theory, Nucl. Phys. B 538 (1999) 67 [hep-th/9806108] [INSPIRE]. · Zbl 0940.83026 · doi:10.1016/S0550-3213(98)00700-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.