×

Core mechanisms of drag enhancement on bodies settling in a stratified fluid. (English) Zbl 1421.76083

Summary: Stratification due to salt or heat gradients greatly affects the distribution of inert particles and living organisms in the ocean and the lower atmosphere. Laboratory studies considering the settling of a sphere in a linearly stratified fluid confirmed that stratification may dramatically enhance the drag on the body, but failed to identify the generic physical mechanism responsible for this increase. We present a rigorous splitting scheme of the various contributions to the drag on a settling body, which allows them to be properly disentangled whatever the relative magnitude of inertial, viscous, diffusive and buoyancy effects. We apply this splitting procedure to data obtained via direct numerical simulation of the flow past a settling sphere over a range of parameters covering a variety of situations of laboratory and geophysical interest. Contrary to widespread belief, we show that, in the parameter range covered by the simulations, the drag enhancement is generally not primarily due to the extra buoyancy force resulting from the dragging of light fluid by the body, but rather to the specific structure of the vorticity field set in by buoyancy effects. Simulations also reveal how the different buoyancy-induced contributions to the drag vary with the flow parameters. To unravel the origin of these variations, we analyse the different possible leading-order balances in the governing equations. Thanks to this procedure, we identify several distinct regimes which differ by the relative magnitude of length scales associated with stratification, viscosity and diffusivity. We derive the scaling laws of the buoyancy-induced drag contributions in each of these regimes. Considering tangible examples, we show how these scaling laws combined with numerical results may be used to obtain reliable predictions beyond the range of parameters covered by the simulations.

MSC:

76D50 Stratification effects in viscous fluids
76T20 Suspensions
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Abaid, N., Adalsteinsson, D., Agyapong, A. & McLaughlin, R. M.2004An internal splash: levitation of falling spheres in stratified fluids. Phys. Fluids16, 1567-1580. · Zbl 1186.76012
[2] Acrivos, A.1960Solution of the laminar boundary layer equation at high Prandtl numbers. Phys. Fluids3, 657-658. · Zbl 0111.38901
[3] Akiyama, S., Yusuke, W., Okino, S. & Hanazaki, H.2019Unstable jets generated by a sphere descending in a very strongly stratified fluid. J. Fluid Mech.867, 26-44.
[4] Alldredge, A. L., Cowles, T. J., MacIntyre, S., Rines, J. E. B., Donaghay, P. L., Greenlaw, C. F., Holliday, D. V., Dekshenieks, M. M., Sullivan, J. M. & Zaneveld, J. R. V.2002Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord. Mar. Ecol.-Prog. Ser.233, 1-12.
[5] Ardekani, A. M. & Stocker, R.2010Stratlets: low Reynolds number point-force solutions in a stratified fluid. Phys. Rev. Lett.105, 084502.
[6] Auguste, F. & Magnaudet, J.2018Path oscillations and enhanced drag of light rising spheres. J. Fluid Mech.841, 228-266. · Zbl 1419.76357
[7] Batchelor, G. K.1967An Introduction to Fluid Dynamics. Cambridge University Press. · Zbl 0152.44402
[8] Batchelor, G. K.1980Mass transfer from small particles suspended in turbulent fluid. J. Fluid Mech.98, 609-623. · Zbl 0456.76068
[9] Bergström, B. & Strömberg, J. O.1997Behavioural differences in relation to pycnoclines during vertical migration of the euphausiids. Meganyctiphanes norvegica (M. Sars) and Thysanoessa raschii (M. Sars). J. Plankton Res.19, 255-261.
[10] Bewley, T. & Meneghello, G.2016Efficient coordination of swarms of sensor-laden balloons for persistent, in situ, real-time measurement of hurricane development. Phys. Rev. Fluids1, 060507.
[11] Blanchette, F. & Shapiro, A. M.2012Drops settling in sharp stratification with and without Marangoni effects. Phys. Fluids24, 042104.
[12] Blanco, A. & Magnaudet, J.1995The structure of the axisymmetrical high-Reynolds number flow around an ellipsoidal bubble of fixed shape. Phys. Fluids7, 1265-1274. · Zbl 1027.76519
[13] Burns, P. & Chemel, C.2015Interactions between downslope flows and a developing cold-air pool. Boundary-Layer Meteorol.154, 57-80.
[14] Calmet, I. & Magnaudet, J.1997Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys. Fluids9, 438-455.
[15] Camassa, R., Falcon, C., Lin, J., McLaughlin, R. M. & Mykins, N.2010A first-principle predictive theory for a sphere falling through sharply stratified fluid at low Reynolds number. J. Fluid Mech.664, 436-465. · Zbl 1221.76064
[16] Camassa, R., Falcon, C., Lin, J., McLaughlin, R. M. & Parker, R.2009Prolonged residence times for particles settling through stratified miscible fluids in the Stokes regime. Phys. Fluids21, 031702. · Zbl 1183.76124
[17] Camassa, R., Khatri, S., McLaughlin, R. M., Prairie, J. C., White, B. L. & Yu, S.2013Retention and entrainment effects: Experiments and theory for porous spheres settling in sharply stratified fluids. Phys. Fluids25, 081701. · Zbl 1320.76109
[18] Candelier, F., Mehaddi, R. & Vauquelin, O.2014The history force on a small particle in a linearly stratified fluid. J. Fluid Mech.749, 184-200.
[19] Chadwick, R. S. & Zvirin, Y.1974Slow viscous flow of an incompressible stratified fluid past a sphere. J. Fluid Mech.66, 377-383. · Zbl 0294.76076
[20] Chongsiripinyo, A. P. & Sarkar, S.2017On the vortex dynamics of flow past a sphere at Re = 3700 in a uniformly stratified fluid. Phys. Fluids29, 020704.
[21] Condie, S. A. & Bormans, M.1997The influence of density stratification on particle settling, dispersion and population growth. J. Theor. Biol.187, 65-75.
[22] D’Asaro2003Performance of autonomous Lagrangian floats. J. Atmos. Ocean. Technol.20, 896-911.
[23] Denman, K. L. & Gargett, A. E.1995Biological-physical interactions in the upper ocean: the role of vertical and small scale transport processes. Annu. Rev. Fluid Mech.27, 225-256.
[24] Farmer, D. & Armi, L.1999The generation and trapping of solitary waves over topography. Science283, 188-190.
[25] Hanazaki, H., Kashimoto, K. & Okamura, T.2009aJets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech.638, 173-197. · Zbl 1183.76020
[26] Hanazaki, H., Konishi, K. & Okamura, T.2009bSchmidt-number effects on the flow past a sphere moving vertically in a stratified diffusive fluid. Phys. Fluids21, 026602. · Zbl 1183.76236
[27] Hanazaki, H., Nakamura, S. & Yoshikawa, H.2015Numerical simulation of jets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech.765, 424-451.
[28] Higginson, R. C., Dalziel, S. B. & Linden, P. F.2003The drag on a vertically moving grid of bars in a linearly stratified fluid. Exp. Fluids34, 678-686.
[29] Kang, I. S. & Leal, L. G.1988The drag coefficient for a spherical bubble in a uniform streaming flow. Phys. Fluids31, 233-237. · Zbl 0641.76098
[30] Kellogg, W. W.1980Aerosols and climate. In Interaction of Energy and Climate (ed. W.Bach, J.Pankrath & J.Williams), pp. 281-303. Reidel.
[31] Kindler, K., Khalili, A. & Stocker, R.2010Diffusion-limited retention of porous particles at density interfaces. Proc. Natl Acad. Sci. USA107, 22163-22168.
[32] Levich, V. G.1962Physicochemical Hydrodynamics. Prentice-Hall.
[33] List, E. J.1971Laminar momentum jets in a stratified fluid. J. Fluid Mech.45, 561-574. · Zbl 0218.76038
[34] MacIntyre, S., Alldredge, A. L. & Gotschalk, C. C.1995Accumulation of marine snow at density discontinuities in the water column. Limnol. Oceanogr.40, 449-468.
[35] Magnaudet, J.2011A ‘reciprocal’ theorem for the prediction of loads on a body moving in an inhomogeneous flow at arbitrary Reynolds number. J. Fluid Mech.689, 564-604. · Zbl 1241.76120
[36] Magnaudet, J., Rivero, M. & Fabre, J.1995Accelerated flows past a rigid sphere or a spherical bubble. 1. Steady straining flow. J. Fluid Mech.284, 97-135. · Zbl 0848.76063
[37] Mehaddi, R., Candelier, F. & Mehling, B.2018Inertial drag on a sphere settling in a stratified fluid. J. Fluid Mech.855, 1074-1087. · Zbl 1415.76691
[38] Moore, D. W.1963The boundary layer on a spherical gas bubble. J. Fluid Mech.16, 161-176. · Zbl 0112.19003
[39] Mowbray, D. E. & Rarity, B. S. H.1967The internal wave pattern produced by a sphere moving vertically in a density stratified liquid. J. Fluid Mech.30, 489-495.
[40] Okino, S., Akiyama, S. & Hanazaki, H.2017Velocity distribution around a sphere descending in a linearly stratified fluid. J. Fluid Mech.826, 759-780.
[41] Pierson, J. L. & Magnaudet, J.2018Inertial settling of a sphere through an interface. Part 2. Sphere and tail dynamics. J. Fluid Mech.835, 808-851. · Zbl 07087011
[42] Ploug, H., Grossart, H. P., Azam, F. & Jorgensen, B. B.1999Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser.179, 1-11.
[43] Ploug, H., Iversen, M. H. & Fischer, G.2008Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnol. Oceanogr.53, 1878-1886.
[44] Riebesell, U.1992The formation of large marine snow and its sustained residence in surface waters. Limnol. Oceeanogr.37, 63-67.
[45] Rückenstein, E.1959On heat transfer between vapour bubbles in motion and the boiling liquid from which they are generated. Chem. Engng Sci.10, 22-30.
[46] Slinn, D. N. & Riley, J. J.1998A model for the simulation of turbulent boundary layers in an incompressible stratified flow. J. Comput. Phys.144, 550-602. · Zbl 0936.76027
[47] Srdic-Mitrovic, A. N., Mohamed, N. A. & Fernando, H. J. S.1999Gravitational settling of particles through density interfaces. J. Fluid Mech.381, 175-198. · Zbl 0939.76503
[48] Sutor, M. M. & Dagg, M. J.2008The effects of vertical sampling resolution on estimates of plankton biomass and rate calculations in stratified water columns. Estuar. Coast. Shelf Sci.78, 107-121.
[49] Torres, C. R., Hanazaki, H., Ochoa, J., Castillo, J. & Van Woert, M.2000Flow past a sphere moving vertically in a stratified diffusive fluid. J. Fluid Mech.417, 211-236. · Zbl 0971.76023
[50] Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B. & Sagan, C.1990Climate and smoke: an appraisal of nuclear winter. Science247, 166-176.
[51] van Leer, B.1977Towards ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys.23, 276-299. · Zbl 0339.76056
[52] Widder, E. A., Johnsen, S., Bernstein, S. A., Case, J. F. & Neilson, D. J.1999Thin layers of bioluminescent copepods found at density discontinuities in the water column. Mar. Biol.134, 429-437.
[53] Yajima, N., Imamura, T., Izutsu, N. & Abe, T.2004Scientific Ballooning. Springer.
[54] Yick, K. Y., Torres, C. R., Peacock, T. & Stocker, R.2009Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. J. Fluid Mech.632, 49-68. · Zbl 1183.76058
[55] Zvirin, Y. & Chadwick, R. S.1975Settling of an axially symmetric body in a viscous stratified fluid. Intl J. Multiphase Flow1, 743-752. · Zbl 0354.76075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.