×

An efficient numerical scheme for a 3D spherical dynamo equation. (English) Zbl 1434.65199

Summary: We develop an efficient numerical scheme for the 3D mean-field spherical dynamo equation. The scheme is based on a semi-implicit discretization in time and a spectral method in space based on the divergence-free spherical harmonic functions. A special semi-implicit approach is proposed such that at each time step one only needs to solve a linear system with constant coefficients. Then, using expansion in divergence-free spherical harmonic functions in the transverse directions allows us to reduce the linear system at each time step to a sequence of one-dimensional equations in the radial direction, which can then be efficiently solved by using a spectral-element method. We show that the solution of fully discretized scheme remains bounded independent of the number of unknowns, and present numerical results to validate our scheme.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
41A30 Approximation by other special function classes
86-08 Computational methods for problems pertaining to geophysics
86A25 Geo-electricity and geomagnetism
76W05 Magnetohydrodynamics and electrohydrodynamics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hollerbach, R., On the theory of the geodynamo, Phys. Earth Planet. Inter., 98, 3, 163-185 (1996)
[2] Jones, Chris A., Planetary magnetic fields and fluid dynamos, (Annual Review of Fluid Mechanics, Vol. 43 (2011), Annual Reviews: Annual Reviews Palo Alto, CA), 583-614 · Zbl 1299.86026
[3] Bullard, Edward Crisp; Gellman, H., Homogeneous dynamos and terrestrial magnetism, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 247, 928, 213-278 (1954) · Zbl 0058.45703
[4] Hollerbach, Rainer, A spectral solution of the magneto-convection equations in spherical geometry, Int. J. Numer. Methods Fluids, 32, 7, 773-797 (2000) · Zbl 0958.76065
[5] Bayliss, R. A.; Forest, C. B.; Nornberg, M. D.; Spence, E. J.; Terry, P. W., Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow, Phys. Rev. E (3), 75, 2, Article 026303 pp. (2007), 13
[6] Guervilly, C.; Cardin, P., Numerical simulations of dynamos generated in spherical Couette flows, Geophys. Astrophys. Fluid Dyn., 104, 2-3, 221-248 (2010) · Zbl 1507.76243
[7] Kuang, W.; Bloxham, J., Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: weak and strong field dynamo action, J. Comput. Phys., 153, 1, 51-81 (1999) · Zbl 0957.76096
[8] Moss, David, Numerical simulation of the Gailitis dynamo, Geophys. Astrophys. Fluid Dyn., 100, 1, 49-58 (2006) · Zbl 1206.85022
[9] Zhang, K.-K.; Busse, F. H., Convection driven magnetohydrodynamic dynamos in rotating spherical shells, Geophys. Astrophys. Fluid Dyn., 49, 1-4, 97-116 (1989) · Zbl 0683.76097
[10] Roberts, Paul H.; Glatzmaier, Gary A.; Clune, Thomas L., Numerical simulation of a spherical dynamo excited by a flow of von Kármán type, Geophys. Astrophys. Fluid Dyn., 104, 2-3, 207-220 (2010) · Zbl 1507.76252
[11] Chan, K.; Zhang, K.; Zou, J., Spherical interface dynamos: Mathematical theory, finite element approximation, and application, SIAM J. Numer. Anal., 44, 5, 1877-1902 (2006) · Zbl 1323.76119
[12] Rahman, Mohammad M.; Fearn, David R., A spectral solution of nonlinear mean field dynamo equations: with inertia, Comput. Math. Appl., 58, 3, 422-435 (2009) · Zbl 1189.86010
[13] Zhang, K.; Chan, K. H.; Zou, J.; Liao, X.; Schubert, G., A three-dimensional spherical nonlinear interface dynamo, Astrophys. J., 596, 1, 663 (2003)
[14] Chan, Kit H.; Zhang, Keke; Zou, Jun; Schubert, Gerald, A nonlinear vacillating dynamo induced by an electrically heterogeneous mantle, Geophys. Res. Lett., 28, 23, 4411-4414 (2001)
[15] Rahman, Mohammad M.; Fearn, David R., A spectral solution of nonlinear mean field dynamo equations: without inertia, Commun. Nonlinear Sci. Numer. Simul., 15, 9, 2552-2564 (2010) · Zbl 1222.86007
[16] Sermange, Michel; Temam, Roger, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36, 5, 635-664 (1983) · Zbl 0524.76099
[17] Girault, Vivette; Raviart, Pierre-Arnaud, (Finite Element Methods for Navier-Stokes Equations. Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer-Verlag: Springer-Verlag Berlin), Theory and algorithms · Zbl 0585.65077
[18] Hill, E. L., The theory of vector spherical harmonics, Amer. J. Phys., 22, 211-214 (1954) · Zbl 0057.05303
[19] Nédélec, J. C., (Acoustic and Electromagnetic Equations. Acoustic and Electromagnetic Equations, Applied Mathematical Sciences, vol. 144 (2001), Springer-Verlag: Springer-Verlag New York), Integral representations for harmonic problems · Zbl 0981.35002
[20] Yee, Kane, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 3, 302-307 (1966) · Zbl 1155.78304
[21] Munz, C.-D.; Omnes, Pascal; Schneider, Rudolf; Sonnendrücker, Eric; Voss, Ursula, Divergence correction techniques for Maxwell solvers based on a hyperbolic model, J. Comput. Phys., 161, 2, 484-511 (2000) · Zbl 0970.78010
[22] Karakashian, Ohannes A.; Jureidini, Wadi N., A nonconforming finite element method for the stationary Navier-Stokes equations, SIAM J. Numer. Anal., 35, 1, 93-120 (1998) · Zbl 0933.76047
[23] Baker, Garth A.; Jureidini, Wadi N.; Karakashian, Ohannes A., Piecewise solenoidal vector fields and the stokes problem, SIAM J. Numer. Anal., 27, 6, 1466-1485 (1990) · Zbl 0719.76047
[24] Tuğluk, Ozan; Tarman, Hakan I., Direct numerical simulation of pipe flow using a solenoidal spectral method, Acta Mech., 223, 5, 923-935 (2012) · Zbl 1335.76030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.