×

zbMATH — the first resource for mathematics

Calculation of critical parameters for spontaneous combustion for some complex geometries using an indirect numerical method. (English) Zbl 1384.65089
Summary: In the theory of spontaneous combustion, identifying the critical value of the Frank-Kamenetskii parameter corresponds to solving a bifurcation point problem. There are two different numerical methods used to solve this problem – the direct and indirect numerical methods. The latter finds the bifurcation point by solving a partial differential equation (PDE) problem. This is a better method to find the bifurcation point for complex geometries. This paper improves the indirect numerical method by combining the grid-domain extension method with the matrix equation computation method. We calculate the critical parameters of the Frank-Kamenetskii equation for some complex geometries using the indirect numerical method. Our results show that both the curve of the outer boundary and the height of the geometries have an effect on the values of the critical Frank-Kamenetskii parameter, however, they have little effect on the critical dimensionless temperature.
MSC:
65P30 Numerical bifurcation problems
80A25 Combustion
37M20 Computational methods for bifurcation problems in dynamical systems
Software:
Algorithm 432
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, C.; Zienkiewicz, O., Spontaneous ignition: finite element solutions for steady and transient conditions, J. Heat Transfer, 96, 398-404, (1974)
[2] Anderson, J. D., Computational fluid dynamics: the basics with applications, (1995), McGraw Hill: McGraw Hill, New York
[3] Bartels, R. H.; Stewart, G. W., Solution of the matrix equation \(ax+xb=c\) [f4], Commun. ACM, 15, 820-826, (1972) · Zbl 1372.65121
[4] Boddington, T.; Gray, P.; Harvey, D. I., Thermal theory of spontaneous ignition: criticality in bodies of arbitrary shape, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 270, 467-506, (1971)
[5] Bowes, P. C., Self-heating: evaluating and controlling the hazards, (1984), Elsevier: Elsevier, Amsterdam
[6] Du, X.; Feng, C., Critical parameters for the thermal explosion of exothermic systems having two-dimensional geometries (in Chinese), J. Beijing Inst. Tech., 14, 37-42, (1994)
[7] Frank-Kamenetskii, D. A., Diffusion and heat transfer in chemical kinetics, (1969), Plenum Press: Plenum Press, New York
[8] Golub, G.; Nash, S.; Van Loan, C., A Hessenberg-Schur method for the problem \(ax+xb=c\), IEEE Trans. Automatic Control, 24, 909-913, (1979) · Zbl 0421.65022
[9] Gray, B.; Hurley, M. J., Spontaneous combustion and self-heating, SFPE handbook of fire protection engineering, 604-632, (2016), Springer: Springer, New York
[10] Luo, Q.; Liang, D.; Mo, S., Numerical calculation of the critical parameters of Frank-Kamenetskii equation in spontaneous combustion theory, Numer. Heat Transfer, Part B: Fundamentals, 68, 403-417, (2015)
[11] Moore, G.; Spence, A., The calculation of turning points of nonlinear equations, SIAM J. Numer. Anal., 17, 567-576, (1980) · Zbl 0454.65042
[12] Partridge, P. W.; Wrobel, L. C., The dual reciprocity boundary element method for spontaneous ignition, Int. J. Numer. Methods Eng., 30, 953-963, (1990)
[13] Prata, A. T.; Sparrow, E. M., Heat transfer and fluid flow characteristics for an annulus of periodically varying cross section, Numer. Heat Transfer, 7, 285-304, (1984) · Zbl 0557.76042
[14] Roose, D.; Hlavacek, V., Numerical computation of Hopf bifurcation points for parabolic diffusion-reaction differential equations, SIAM J. Appl. Math., 43, 1075-1085, (1983) · Zbl 0548.35012
[15] Roose, D.; Hlavacek, V., A direct method for the computation of Hopf bifurcation points, SIAM J. Appl. Math., 45, 879-894, (1985) · Zbl 0592.65080
[16] Roose, D.; Piessens, R.; Hlavacek, V.; Van Rompay, P., Direct evaluation of critical conditions for thermal explosion and catalytic reaction, Combust. Flame, 55, 323-329, (1984)
[17] Sexton, M. J.; Macaskill, C.; Gray, B. F., Thermal ignition in rectangular and triangular regions, ANZIAM J., 42, E, C1283-C1304, (2000)
[18] Seydel, R., Numerical computation of branch points in nonlinear equations, Numer. Math., 33, 339-352, (1979) · Zbl 0396.65023
[19] Sorensen, D. C.; Zhou, Y., Direct methods for matrix sylvester and lyapunov equations, J. Appl. Math., 2003, 277-303, (2003) · Zbl 1028.65039
[20] Tao, W., Numerical heat transfer, (2001), Xi’an Jiaotong University Press
[21] Xue, D.; Chen, Y., Solving applied mathematical problems with MATLAB, (2008), Chapman and Hall/CRC: Chapman and Hall/CRC, Boca Raton
[22] Zhang, Y. P.; Su, G. H.; Qiu, S. Z.; Tian, W. X.; Gaus-Liu, X.; Kretzschmar, F.; Miassoedov, A., Numerical study on the heat transfer characteristics of live-l4 melt pool with a partial solidification process, Prog. Nucl. Energy, 74, 213-221, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.