×

zbMATH — the first resource for mathematics

Iterative reconfigurable tree search detection of MIMO systems. (English) Zbl 1168.94482
Summary: This paper is concerned with reduced-complexity detection, referred to as iterative reconfigurable tree search (IRTS) detection, with application in iterative receivers for multiple-input multiple-output (MIMO) systems. Instead of the optimum maximum a posteriori probability detector, which performs brute force search over all possible transmitted symbol vectors, the new scheme evaluates only the symbol vectors that contribute significantly to the soft output of the detector. The IRTS algorithm is facilitated by carrying out the search on a reconfigurable tree, constructed by computing the reliabilities of symbols based on minimum mean-square error (MMSE) criterion and reordering the symbols according to their reliabilities. Results from computer simulations are presented, which proves the good performance of IRTS algorithm over a quasistatic Rayleigh channel even for relatively small list sizes.
MSC:
94A13 Detection theory in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] doi:10.1023/A:1008889222784 · doi:10.1023/A:1008889222784
[2] doi:10.1002/ett.4460100604 · doi:10.1002/ett.4460100604
[3] doi:10.1109/TSP.2002.803327 · doi:10.1109/TSP.2002.803327
[4] doi:10.1109/MCOM.2004.1341260 · doi:10.1109/MCOM.2004.1341260
[5] doi:10.1109/49.924879 · doi:10.1109/49.924879
[6] doi:10.1109/TCOMM.2003.809789 · doi:10.1109/TCOMM.2003.809789
[7] doi:10.1109/TCOMM.2004.826349 · doi:10.1109/TCOMM.2004.826349
[8] doi:10.1109/TCOMM.2005.849638 · doi:10.1109/TCOMM.2005.849638
[9] doi:10.1109/TCOM.1984.1096023 · doi:10.1109/TCOM.1984.1096023
[10] doi:10.1109/26.774855 · doi:10.1109/26.774855
[11] doi:10.1109/18.259636 · Zbl 0802.94024 · doi:10.1109/18.259636
[12] doi:10.1109/TSP.2003.818203 · doi:10.1109/TSP.2003.818203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.