×

zbMATH — the first resource for mathematics

Phase transition properties of ferroelectric thin film with one distinct inserting-layer. (English) Zbl 1177.82126
The paper studies the phase transition properties of the ferroelectric thin film A with one distinct inserting-layer B in the middle. First, by using the Hamiltonian of the system (the ferroelectric thin film with one distinct inserting-layer), the mean field approximation and assuming that the pseudo-spins in the same layer have the same values, it is derived into framework of the transverse Ising model a recursive equation for the phase transition properties. Then, based on this recursive equation, the authors calculate the phase diagrams of surface exchange interaction versus Curie temperature, the surface transverse field versus Curie temperature, and the polarization of different layers. The effect of the parameters of the inserting-layer B in the phase diagrams is studied while the parameters of bulk material A are fixed. The numerical results show that the phase diagrams, the crossover value of the transverse field, the ferroelectric range, the polarization of various layers, and the critical temperature depend on the transverse field and the exchange interaction of the inserting-layer B sensitively. It is shown that the numerical results qualitatively coincide with the test data for different ferroelectrics. The paper also investigates the characteristics of the dependence
MSC:
82D45 Statistical mechanics of ferroelectrics
82B26 Phase transitions (general) in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.351536
[2] DOI: 10.1143/JJAP.33.5192
[3] Erbil A., Phys. Rev. Lett. 77 pp 628–
[4] Tabata H., Appl. Phys. Lett. 70 pp 20–
[5] DOI: 10.1063/1.121066
[6] DOI: 10.1016/j.ssc.2007.01.008
[7] Wang X. G., Solid State Commun. 113 pp 807–
[8] DOI: 10.1016/S0378-4371(02)01516-9 · Zbl 01864901
[9] DOI: 10.1209/epl/i2005-10293-9
[10] DOI: 10.1209/epl/i2005-10437-y
[11] DOI: 10.1016/j.ssc.2004.01.044
[12] DOI: 10.1016/0038-1098(63)90212-6
[13] DOI: 10.1088/0953-8984/4/13/024
[14] DOI: 10.1103/PhysRevB.59.6908
[15] DOI: 10.1016/S0375-9601(00)00145-6
[16] Wang C. L., J. Phys.: Condens. Matter 3 pp 4743–
[17] DOI: 10.1103/PhysRevB.45.4454
[18] DOI: 10.1103/PhysRevB.46.9220
[19] DOI: 10.1088/0953-8984/5/9/006
[20] DOI: 10.1016/j.physb.2004.02.006
[21] Teng B. H., Phys. Rev. B 69 pp 104115–
[22] DOI: 10.1103/PhysRevB.52.766
[23] DOI: 10.1080/00150199708008375
[24] Wang C. L., Ferroelectrics 77 pp 21– · Zbl 1167.74046
[25] Wesselinowa J. M., Phys. Stat. Sol. B 233 pp 737–
[26] DOI: 10.1016/S0038-1098(02)00012-1
[27] DOI: 10.1016/S0038-1098(01)00462-8
[28] Wesselinowa J. M., J. Phys.: Condens. Matter 17 pp 4699–
[29] DOI: 10.1016/j.physleta.2005.08.044
[30] DOI: 10.1063/1.1788894
[31] DOI: 10.1063/1.1751630
[32] DOI: 10.1143/JJAP.42.6486
[33] DOI: 10.1143/JJAP.43.237
[34] DOI: 10.1063/1.1758314
[35] DOI: 10.1103/PhysRevLett.94.107601
[36] DOI: 10.1143/JJAP.42.166
[37] DOI: 10.1103/PhysRevB.63.214102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.