×

A reconstruction method of porous media integrating soft data with hard data. (English) Zbl 1184.86014

Summary: The three-dimensional reconstruction of porous media is of great significance to the research of mechanisms of fluid flow. The real three-dimensional structural data of porous media are helpful to describe the irregular topologic structures in porous media. The reconstruction of porous media will be inaccurate while only hard data or no conditional data are available. Reconstructed results can be more accurate, using soft data during reconstruction. Integrating soft data with hard data, a method based on multiple-point geostatistics (MPS) is proposed to reconstruct three-dimensional structures of porous media. The variogram curves and permeability, computed by lattice Boltzmann method (LBM), of the reconstructed images and the target image obtained from real volume data were compared, showing that the structural characteristics of reconstructed porous media using both soft data and hard data as conditional data are most similar to those of real volume data.

MSC:

86A32 Geostatistics
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Sahimi M. Flow and Transport in Porous Media and Fractured Rock–From Classical Method to Modern Approaches. New York: Wiley-VCH Verlag GmbH, 1995. 158–214 · Zbl 0849.76001
[2] Fatt I. The network model of porous media I. Capillary pressure characteristics. Trans AIME, 1956, 207: 144–159
[3] Dixit A B, Buckley J S, McDougall S R, et al. Empirical measures of wettability in porous media and the relationship between them derived from pore-scale modeling. Transp Porous Media, 2000, 40: 27–54 · doi:10.1023/A:1006687829177
[4] Blunt M, King P. Macroscopic parameters from simulations of pore scale flow. Phys Rev A, 1990, 42: 4780–4787 · doi:10.1103/PhysRevA.42.4780
[5] Blunt M, King P. Relative permeability from two- and three-dimensional pore-scale modeling. Transp Porous Media, 1991, 6: 407–433 · doi:10.1007/BF00136349
[6] Bryant S L, King P R, Mellor D W. Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp Porous Media, 1993, 11: 53–70 · doi:10.1007/BF00614635
[7] Hou J, Li Z Q, Zhang S K, et al. Experiment and simulation study on construction of a three-dimensional network model. Sci China Ser G-Phys Mech Astron, 2008, 51: 1761–1774 · doi:10.1007/s11433-008-0176-5
[8] Zhou H W, Zhang Y H, Li A M, et al. Experimental study on moving boundaries of fluid flow in porous media. Chinese Sci Bull, 2008, 53: 2438–2445 · doi:10.1007/s11434-008-0337-y
[9] Sun Q C, Huang J, Wang G Q. Foam drainage wave coalescing and its energy evolution. Chinese Sci Bull, 2008, 53: 3138–3141 · doi:10.1007/s11434-008-0426-y
[10] Zhang Y. Upscaling conductivity and porosity in three-dimensional heterogeneous porous media. Chinese Sci Bull, 2004, 49: 2415–2423
[11] Hu X J, Du J H, Liu X, et al. Scaling effect of breakthrough character in porous media. Chinese Sci Bull, 2001, 46: 878–880 · doi:10.1007/BF02900443
[12] Yuan Y R, Han Y J. Numerical simulation and application of three-dimensional oil resources migration-accumulation of fluid dynamics in porous media. Sci China Ser G-Phys Mech Astron, 2008, 51: 1144–1163 · Zbl 1176.76102 · doi:10.1007/s11433-008-0116-4
[13] Cai R X, Liu Q B. A new method for deriving analytical solutions of partial differential equations–Algebraically explicit analytical solutions of two-buoyancy natural convection in porous media. Sci China Ser G-Phys Mech Astron, 2008, 51: 1733–1744 · doi:10.1007/s11433-008-0174-7
[14] Chen Q, Ren J X, Guo Z Y. Fluid flow field synergy principle and its application to drag reduction. Chinese Sci Bull, 2008, 53: 1768–1772 · doi:10.1007/s11434-008-0237-1
[15] Zhang H W, Qin J M. Basic theories for strain localization analysis of porous media with rate dependent mode. Chinese Sci Bull, 2005, 50: 2793–2799
[16] Huang F. Three-dimensional reconstruction and simulation of porous media. Ph.D. Dissertation. Hefei: University of Science and Technology of China, 2007
[17] Fredrich J T. 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes. Phys Chem Earth Part A: Solid Earth Geod, 1999, 24: 551–561 · doi:10.1016/S1464-1895(99)00079-4
[18] Okabe H, Blunt M J. Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys Rev E, 2004, 70: 066135
[19] Okabe H, Blunt M J. Pore space reconstruction using multiple-point statistics. J Petrol Sci Eng, 2005, 46: 121–137 · doi:10.1016/j.petrol.2004.08.002
[20] Bryant S, Blunt M. Prediction of relative permeability in simple porous-media. Phys Rev A, 1992, 46: 2004–2011 · doi:10.1103/PhysRevA.46.2004
[21] Bakke S, Øren P E. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. SPE J, 1997, 2: 136–149
[22] Pilotti M. Reconstruction of clastic porous media. Transp Porous Media, 2000, 41: 359–364 · doi:10.1023/A:1006696301805
[23] Quiblier J A. A new three-dimensional modeling technique for studying porous-media. J Coll Interf Sci, 1984, 98: 84–102
[24] Adler P M, Jacquin C G, Quiblier J A. Flow in simulated porous-media. Intern J Multiph Flow, 1990, 16: 691–712 · Zbl 1134.76474 · doi:10.1016/0301-9322(90)90025-E
[25] Roberts A P, Torquato S. Chord-distribution functions of three-dimensional random media: Approximate first passage times of Gaussian processes. Phys Rev E 1999, 59: 4953–4963 · doi:10.1103/PhysRevE.59.4953
[26] Talukdar M S, Torsaeter O, Ioannidis M A. Stochastic reconstruction of particulate media from two-dimensional images. J Coll Interf Sci, 2002, 248: 419–428 · doi:10.1006/jcis.2001.8064
[27] Zhang T F. Incorporating geological conceptual models and interpretations into reservoir modeling using multiple-point geostatistics. Earth Sci Front, 2008, 15: 26–35 · doi:10.1016/S1872-5791(08)60016-0
[28] Strebelle S. Sequential simulation drawing structures from training images. Ph.D. Dissertation. Stanford, CA: Stanford University, 2000
[29] Journel A G. Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Math Geol, 2002, 34: 573–596 · Zbl 1032.86005 · doi:10.1023/A:1016047012594
[30] Strebelle S. Conditional simulation of complex geological structures using multiple-point statistics. Math Geol, 2002, 34: 1–21 · Zbl 1036.86013 · doi:10.1023/A:1014009426274
[31] Wu S H, Li W K. Multiple-point geostatistics: theory, application and perspective. J Palaeogeography, 2004, 7: 137–144
[32] Tran T. Improving variogram reproduction on dense simulation grids. Comput Geosci, 1994, 20: 1161–1168 · doi:10.1016/0098-3004(94)90069-8
[33] Remy N. Geostatistical Earth Modeling Software: User’s Manual. Stanford University, 2004. 15–18, http://sgems.sourceforge.net
[34] Robert S M, Robert S B, Daryl W G. Boundary conditions for the lattice boltzmann method. Phys Fluids, 1996, 8: 1788–1800 · Zbl 1027.76632 · doi:10.1063/1.868961
[35] He X, Zou Q, Luo L S. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice boltzmann BGK model. J Stat Phys, 1997, 87: 115–136 · Zbl 0937.82043 · doi:10.1007/BF02181482
[36] Guo Z L, Zheng C G, Shi B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice boltzmann method. Chinese Phys, 2002, 11: 366–374 · doi:10.1088/1009-1963/11/4/310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.