×

Spatiotemporally varying visual hallucinations: I. Corticothalamic theory. (English) Zbl 1412.92038

Summary: The thalamus is introduced to a recent model of the visual cortex to examine its effect on pattern formation in general and the generation of temporally oscillating patterns in particular. By successively adding more physiological details to a basic corticothalamic model, it is determined which features are responsible for which effects. In particular, with the addition of a thalamic population, several changes occur in the spatiotemporal power spectrum: power increases at resonances of the corticothalamic loop, while the loop acts as a spatiotemporal low-pass filter, and synaptic and dendritic dynamics temporally low-pass filter the activity more generally. Investigation of the effect of altering parameters and gains reveals new parameter regimes where activity that corresponds to hallucinations is induced by both spatially homogeneous and inhomogeneous temporally oscillating modes. This suggests that the thalamus and corticothalamic loops are essential components of a model of oscillating visual hallucinations.
For Part II, see [the authors, J. Theor. Biol. 357, 210-219 (2014; Zbl 1412.92037)].

MSC:

92C20 Neural biology

Citations:

Zbl 1412.92037
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amos, J. F., Differential diagnosis of common etiologies of photopsia, J. Am. Optom. Assoc., 70, 8, 485-504 (1999)
[2] Andrews, T.; Halpern, S.; Purves, D., Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract, J. Neurosci., 17, 8, 2859 (1997)
[3] Blasdel, G. G.; Lund, J. S.; Fitzpatrick, D., Intrinsic connections of macaque striate cortexaxonal projections of cells outside lamina 4C, J. Neurosci., 5, 12, 3350-3369 (1985)
[4] Bosking, W. H.; Zhang, Y.; Schofield, B.; Fitzpatrick, D., Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, J. Neurosci., 17, 6, 2112-2127 (1997)
[5] Breakspear, M.; Roberts, J.; Terry, J.; Rodrigues, S.; Mahant, N.; Robinson, P., A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis, Cereb. Cortex, 16, 9, 1296 (2006)
[6] Bressloff, P. C., Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philos. Trans. R. Soc. B: Biol. Sci., 356, 1407, 299-330 (2001)
[7] Bressloff, P. C., Spatially periodic modulation of cortical patterns by long-range horizontal connections, Phys. D: Nonlinear Phenom., 185, 3-4, 131-157 (2003) · Zbl 1030.92006
[8] Bressloff, P. C.; Coombes, S., Physics of the extended neuron, Int. J. Mod. Phys. B, 11, 20, 2343-2392 (1997)
[9] Brown, G. C.; Murphy, R. P., Visual symptoms associated with choroidal neovascularization. Photopsias and the Charles Bonnet syndrome, Arch. Ophthalmol., 110, 9, 1251-1256 (1992)
[10] Coombes, S., Waves, bumps, and patterns in neural field theories, Biol. Cybern., 93, 2, 91-108 (2005) · Zbl 1116.92012
[11] Ermentrout, G. B., Neural networks as spatio-temporal pattern-forming systems, Rep. Prog. Phys., 61, 353-430 (1998)
[12] Ermentrout, G. B.; Cowan, J. D., A mathematical theory of visual hallucination patterns, Biol. Cybern., 34, 3, 137-150 (1979) · Zbl 0409.92008
[13] Ermentrout, G. B.; Cowan, J. D., Temporal oscillations in neuronal nets, J. Math. Biol., 7, 3, 265-280 (1979) · Zbl 0402.92012
[14] Goldman, R. I.; Stern, J. M.; Engel, J.; Cohen, M. S., Simultaneous EEG and fMRI of the alpha rhythm, NeuroReport, 13, 18, 2487 (2002)
[15] Grinvald, A.; Lieke, E. E.; Frostig, R. D.; Hildesheim, R., Cortical point-spread function and long range interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, J. Neurosci., 14, 2545-2568 (1994)
[17] Henke, H.; Robinson, P.; Drysdale, P.; Loxley, P., Spatiotemporal dynamics of pattern formation in the primary visual cortex and hallucinations, Biol. Cybern., 101, 1, 3-18 (2009) · Zbl 1342.92032
[18] Hohenberg, P. C.; Cross, M., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 851 (1993) · Zbl 1371.37001
[19] Hutt, A.; Bestehorn, M.; Wennekers, T., Pattern formation in intracortical neuronal fields, Netw. Comput. Neural Syst., 14, 2, 351-368 (2003)
[20] Klüver, H., Mescal and Mechanisms of Hallucinations (1966), University of Chicago Press, Chicago
[21] Lund, J. S.; Angelucci, A.; Bressloff, P. C., Anatomical substrates for functional columns in macaque monkey primary visual cortex, Cereb. Cortex, 13, 1, 15-24 (2003)
[22] Newell, A. C.; Passot, T.; Lega, J., Order parameter equations for patterns, Annu. Rev. Fluid Mech., 25, 1, 399-453 (1993)
[23] Panayiotopoulos, C. P., Elementary visual hallucinations in migraine and epilepsy, Br. Med. J., 57, 11, 1371 (1994)
[24] Panayiotopoulos, C. P., Elementary visual hallucinations, blindness, and headache in idiopathic occipital epilepsydifferentiation from migraine, Br. Med. J., 66, 4, 536 (1999)
[25] Rennie, C. J.; Robinson, P. A.; Wright, J. J., Unified neurophysical model of EEG spectra and evoked potentials, Biol. Cybern., 86, 6, 457-471 (2002) · Zbl 1066.92010
[26] Rennie, C. J.; Wright, J. J.; Robinson, P. A., Mechanisms of cortical electrical activity and emergence of gamma rhythm, J. Theor. Biol., 205, 1, 17-35 (2000)
[27] Robinson, P. A., Propagator theory of brain dynamics, Phys. Rev. E, 72, 1, 11904 (2005)
[28] Robinson, P. A., Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations, Phys. Rev. E, 73, 4, 41904 (2006)
[29] Robinson, P. A.; Rennie, C. J.; Rowe, D. L., Dynamics of large-scale brain activity in normal arousal states and epileptic seizures, Phys. Rev. E, 65, 4, 41924 (2002)
[30] Robinson, P. A.; Rennie, C. J.; Rowe, D. L.; O׳Connor, S. C., Estimation of multiscale neurophysiologic parameters by electroencephalographic means, Hum. Brain Mapp., 23, 1, 53-72 (2004)
[31] Robinson, P. A.; Rennie, C. J.; Wright, J. J., Propagation and stability of waves of electrical activity in the cerebral cortex, Phys. Rev. E, 56, 1, 826-840 (1997)
[32] Robinson, P. A.; Rennie, C. J.; Wright, J. J.; Bahramali, H.; Gordon, E.; Rowe, D. L., Prediction of electroencephalographic spectra from neurophysiology, Phys. Rev. E, 63, 2, 21903 (2001)
[33] Robinson, P. A.; Whitehouse, R. W.; Rennie, C. J., Nonuniform corticothalamic continuum model of electroencephalographic spectra with application to split-alpha peaks, Phys. Rev. E, 68, 2, 21922 (2003)
[34] Schreckenberger, M.; Lange-Asschenfeld, C.; Lochmann, M.; Mann, K.; Siessmeier, T.; Buchholz, H. G.; Bartenstein, P.; Gründer, G., The thalamus as the generator and modulator of EEG alpha rhythma combined PET/EEG study with lorazepam challenge in humans, Neuroimage, 22, 2, 637-644 (2004)
[35] Slovin, H.; Arieli, A.; Hildesheim, R.; Grinvald, A., Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys, J. Neurophysiol., 88, 6, 3421-3438 (2002)
[36] Steriade, M., Corticothalamic resonance, states of vigilance and mentation, Neuroscience, 101, 2, 243-276 (2000)
[37] Stettler, D. D.; Das, A.; Bennett, J.; Gilbert, C. D., Lateral connectivity and contextual interactions in macaque primary visual cortex, Neuron, 36, 4, 739-750 (2002)
[38] Tass, P., Oscillatory cortical activity during visual hallucinations, J. Biol. Phys., 23, 1, 21-66 (1997)
[39] Wilson, H. R.; Cowan, J. D., A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Biol. Cybern., 13, 2, 55-80 (1973) · Zbl 0281.92003
[40] Yacoub, E.; Harel, N.; Uğurbil, K., High-field fMRI unveils orientation columns in humans, Proc. Natl. Acad. Sci., 105, 30, 10607 (2008)
[41] Yoshioka, T.; Blasdel, G. G.; Levitt, J. B.; Lund, J. S., Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex, Cereb. Cortex, 6, 2, 297-310 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.