×

zbMATH — the first resource for mathematics

Uncovered bargaining solutions. (English) Zbl 1211.91141
Summary: An uncovered bargaining solution is a bargaining solution for which there exists a complete and asymmetric relation (tournament) such that, for each feasible set, the bargaining solution set coincides with the uncovered set of the tournament. We provide a characterization of a class of uncovered bargaining solutions.

MSC:
91B26 Auctions, bargaining, bidding and selling, and other market models
91A10 Noncooperative games
91B14 Social choice
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aleskerov F, Monjardet B (2002) Utility, maximization, choice and preference. Springer, Berlin · Zbl 1010.91022
[2] Banks JS, Duggan J, Le Breton M (2006) Social Choice and Electoral Competition in the General Spatial Model. J Econ Theory 126: 194–234 · Zbl 1108.91023 · doi:10.1016/j.jet.2004.08.001
[3] Denicol√≥ V, Mariotti M (2000) Nash bargaining theory, non-convex problems and social welfare ordering. Theory Decis 351–358 · Zbl 0963.91052
[4] Ehlers L, Sprumont Y (2008) Weakened WARP and top-cycle choice rules. J Math Econ 44(1): 87–94 · Zbl 1141.91358 · doi:10.1016/j.jmateco.2007.05.004
[5] Kaneko M (1980) An extension of the Nash bargaining problem and the Nash social welfare function. Theory Decis 12: 135–148 · Zbl 0434.90011 · doi:10.1007/BF00154358
[6] Kim T, Richter MK (1986) Nontransitive-nontotal consumer theory. J Econ Theory 38(2): 324–363 · Zbl 0598.90005 · doi:10.1016/0022-0531(86)90122-5
[7] Lombardi M (2006) Uncovered set choice rules. Soc Choice Welf 31(2): 271–279 · Zbl 1163.91348 · doi:10.1007/s00355-007-0281-9
[8] Mariotti M (1998) Nash bargaining theory when the number of alternatives can be finite. Soc Choice Welf 15: 413–421 · Zbl 1066.91557 · doi:10.1007/s003550050114
[9] Mariotti M (1999) Fair bargains: distributive justice and Nash bargaining theory. Rev Econ Stud 66: 733–741 · Zbl 0942.91039 · doi:10.1111/1467-937X.00106
[10] Peters H, Vermeulen D (2006) WPO, COV and IIA bargaining solutions for non-convex bargaining problems. mimeo · Zbl 1268.91079
[11] Peters H, Wakker P (1991) Independence of irrelevant alternatives and revealed group preferences. Econometrica 59: 1787–1801 · Zbl 0747.90007 · doi:10.2307/2938291
[12] Zhou L (1997) The Nash bargaining theory with non-convex problems. Econometrica 65: 681–685 · Zbl 0876.90102 · doi:10.2307/2171759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.