×

Information geometry formalism for the spatially homogeneous Boltzmann equation. (English) Zbl 1338.94044


MSC:

94A17 Measures of information, entropy
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Amari, Methods of Information Geometry 191 (2000) · Zbl 0960.62005
[2] Amari, Differential Geometry in Statistical Inference (1987)
[3] Shima, The Geometry of Hessian Structures (2007) · Zbl 1244.53004
[4] Cercignani, The Boltzmann Equation and Its Applications 67 (1988) · Zbl 0646.76001
[5] Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics I (2002) · Zbl 1170.82369 · doi:10.1016/S1874-5792(02)80004-0
[6] Do Carmo, Riemannian Geometry (1992)
[7] Dawid, Further comments on: ”Some comments on a paper by Bradley Efron”, Ann. Stat. 5 pp 1249– (1977) · Zbl 0373.62004 · doi:10.1214/aos/1176344011
[8] Efron, Defining the curvature of a statistical problem (with applications to second order efficiency), Ann. Stat. 3 pp 1189– (1975) · Zbl 0321.62013 · doi:10.1214/aos/1176343282
[10] Cena, Exponential statistical manifold, Ann. Inst. Stat. Math. 59 pp 27– (2007) · Zbl 1108.62003 · doi:10.1007/s10463-006-0096-y
[11] Gibilisco, Connections on statistical manifolds of density operators by geometry of noncommutative Lp-spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 pp 169– (1999) · Zbl 1040.46502 · doi:10.1142/S0219025799000096
[12] DOI: 10.1142/S0219025799000096 · Zbl 1040.46502 · doi:10.1142/S0219025799000096
[14] Pistone, An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one, Ann. Stat. 23 pp 1543– (1995) · Zbl 0848.62003 · doi:10.1214/aos/1176324311
[15] Pistone, The exponential statistical manifold: mean parameters, orthogonality and space transformations, Bernoulli 5 pp 721– (1999) · Zbl 0947.62003 · doi:10.2307/3318699
[16] Pistone, {\(\kappa\)}-exponential models from the geometrical viewpoint, Europ. Phys. J. B 71 pp 29– (2009) · Zbl 1188.82008 · doi:10.1140/epjb/e2009-00154-y
[17] Pistone, Algebraic varieties vs differentiable manifolds in statistical models, Algebraic and Geometric Methods in Statistics pp 341– (2010)
[18] Pistone, Nonparametric information geometry, Geometric Science of Information 8085 pp 5– (2013) · Zbl 1311.94023
[19] Pistone, Examples of the application of nonparametric information geometry to statistical physics, Entropy 15 pp 4042– (2013) · Zbl 1346.35144 · doi:10.3390/e15104042
[20] Abraham, Manifolds, Tensor Analysis, and Applications 75 (1988)
[21] Bourbaki, Variétés differentielles et analytiques. Fascicule de résultats/Paragraphes 1 à 7 (1971)
[22] Lang, Differential and Riemannian Manifolds 160 (1995)
[23] Musielak, Orlicz Spaces and Modular Spaces 1034 (1983)
[24] Newton, An infinite-dimensional statistical manifold modelled on Hilbert space, J. Funct. Anal. 263 pp 1661– (2012) · Zbl 1257.46044 · doi:10.1016/j.jfa.2012.06.007
[25] Ay, Information geometry and sufficient statistics, Probab. Theory Relat. Fields 162 pp 327– (2014) · Zbl 1321.62008 · doi:10.1007/s00440-014-0574-8
[26] Appell, Nonlinear Superposition Operators 95 (1990) · Zbl 0701.47041
[27] DOI: 10.3150/15-BEJ698 · Zbl 1360.62249 · doi:10.3150/15-BEJ698
[28] Brown, Fundamentals of statistical exponential families with applications in statistical decision theory (1986) · Zbl 0685.62002
[29] Kullback, On information and sufficiency, Ann. Math. Stat. 22 pp 79– (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[30] Brègman, A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming, Ž. Vyčisl. Mat. i Mat. Fiz. 7 pp 620– (1967)
[31] Ambrosio, Gradient Flows in Metric Spaces and in the Space of Probability Measures (2008) · Zbl 1210.28005
[32] Villani, Entropy production and convergence to equilibrium, Entropy Methods for the Boltzmann Equation 1916 pp 1– (2008)
[33] Majewski, On applications of Orlicz spaces to statistical physics, Ann. Henri Poincaré 15 pp 1197– (2014) · Zbl 1295.82019 · doi:10.1007/s00023-013-0267-3
[34] Lieb, Analysis 14 (2001)
[35] Hyvärinen, Estimation of non-normalized statistical models by score matching, J. Mach. Learn. Res. 6 pp 695– (2005) · Zbl 1222.62051
[36] Toscani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Commun. Math. Phys. 203 pp 667– (1999) · Zbl 0944.35066 · doi:10.1007/s002200050631
[37] Adams, Sobolev Spaces 140 (2003)
[38] Malliavin, Integration and Probability 157 (1995)
[40] Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011) · Zbl 1220.46002
[41] Parry, Proper local scoring rules, Ann. Stat. 40 pp 561– (2012) · Zbl 1246.62011 · doi:10.1214/12-AOS971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.