×

The role of population inertia in predicting the outcome of stage-structured biological invasions. (English) Zbl 1342.92172

Summary: Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed.

MSC:

92D25 Population dynamics (general)
39A30 Stability theory for difference equations

Software:

Eigtool
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Vitousek, P. M.; D’Antonio, C. M.; Loope, L. L.; Rejmanek, M.; Westbrooks, R., Introduced species: A significant component of human-caused global change, New Zeal. J. Ecol., 21, 1, 1-16 (1997)
[2] Bebber, D. P.; Ramotowski, M. A.; Gurr, S. J., Crop pests and pathogens move polewards in a warming world, Nature Clim. Change, 3, 11, 985-988 (2013)
[3] Lodge, D. M., Biological invasions: Lessons for ecology, Trends Ecol. Evol., 8, 4, 133-137 (1993)
[5] Valéry, L.; Fritz, H.; Lefeuvre, J.-C.; Simberloff, D., In search of a real definition of the biological invasion phenomenon itself, Biol. Invasions, 10, 8, 1345-1351 (2008)
[6] Williamson, M. H.; Fitter, A., The characters of successful invaders, Biol. Conserv., 78, 1, 163-170 (1996)
[7] Williamson, M., Biological Invasions (1996), Springer
[8] Kolar, C. S.; Lodge, D. M., Progress in invasion biology: Predicting invaders, Trends Ecol. Evol., 16, 4, 199-204 (2001)
[9] Sakai, A. K.; Allendorf, F. W.; Holt, J. S.; Lodge, D. M.; Molofsky, J.; With, K. A., The population biology of invasive specie, Annu. Rev. Ecol. Syst., 305-332 (2001)
[10] Shea, K.; Chesson, P., Community ecology theory as a framework for biological invasions, Trends Ecol. Evol., 17, 4, 170-176 (2002)
[11] Heger, T.; Trepl, L., Predicting biological invasions, Biol. Invasions, 5, 4, 313-321 (2003)
[12] Blackburn, T. M.; Pyšek, P.; Bacher, S.; Carlton, J. T.; Duncan, R. P.; Jarošík, V., A proposed unified framework for biological invasions, Trends Ecol. Evol., 26, 7, 333-339 (2011)
[13] Rand, D.; Wilson, H.; McGlade, J., Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics, Philos. Trans. Roy. Soc. London Ser. B: Biol. Sci., 343, 1305, 261-283 (1994)
[14] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003), Springer-Verlag · Zbl 1027.37002
[15] Chiang, H.-D.; Hirsch, M. W.; Wu, F. F., Stability regions of nonlinear autonomous dynamical systems, IEEE Trans. Automat. Control, 33, 1, 16-27 (1988) · Zbl 0639.93043
[16] Williamson, M., Mathematical models of invasion, Biol. Invasions: Global Persp., 37, 329-350 (1989)
[17] Courchamp, F.; Berec, L.; Gascoigne, J., Allee effects in ecology and conservation, Environ. Conserv., 36, 1, 80-85 (2008)
[18] Taylor, C. M.; Hastings, A., Allee effects in biological invasions, Ecol. Lett., 8, 8, 895-908 (2005)
[19] Dahlquist, G., Stability and error bounds in the numerical integration of ordinary differential equations (1958), Stockholm University, (Ph.D. thesis)
[20] Lozinskiĭ, S. M., Error estimate for numerical integration of ordinary differential equations. I, Izv. Vysš. Učebn. Zaved. Matematika, 5, 6, 52-90 (1958), ; Izvestija Vysših Učebnyh Zavedeniĭ\Matematika 1959 (1959), no. 5 (12), 222 (Russian) · Zbl 0198.21202
[21] Hinrichsen, D.; Pritchard, A. J., Mathematical Systems Theory I, Modelling, State Space Analysis, Stability and Robustness, Texts in Applied Mathematics, Vol. 48, XVI+804 (2005), Springer Verlag: Springer Verlag Berlin · Zbl 1074.93003
[22] Hastings, A., Transients: The key to long-term ecological understanding?, Trends Ecol. Evol., 19, 1, 39-45 (2004)
[23] Caswell, H., Sensitivity analysis of transient population dynamics, Ecol. Lett., 10, 1, 1-15 (2007)
[24] Ezard, T.; Bullock, J.; Dalgleish, H.; Millon, A.; Pelletier, F.; Ozgul, A., Matrix models for a changeable world: The importance of transient dynamics in population management, J. Appl. Ecol., 47, 3, 515-523 (2010)
[25] Snyder, R. E., What makes ecological systems reactive?, Theor. Popul. Biol., 77, 4, 243-249 (2010) · Zbl 1403.92338
[26] Stott, I.; Townley, S.; Hodgson, D. J., A framework for studying transient dynamics of population projection matrix models, Ecol. Lett., 14, 9, 959-970 (2011)
[27] Koons, D. N.; Holmes, R. R.; Grand, J. B., Population inertia and sensitivity to changes in vital rates and population structure, Ecology, 88, 11, 2857-2867 (2007)
[28] Eager, E. A.; Rebarber, R.; Tenhumberg, B., Choice of density-dependent seedling recruitment function affects predicted transient dynamics: a case study with platte thistle, Theor. Ecol., 5, 3, 387-401 (2012)
[29] Dreiwei, H., Using transfer function analysis in modelling biological invasions (2012), PhD thesis, University of Exeter
[30] Caswell, H., Matrix Population Models: Construction, Analysis, and Interpretation (2001), Sinauer Associates
[31] Cushing, J. M., An Introduction to Structured Population Dynamics (1998), SIAM · Zbl 0939.92026
[32] Stott, I.; Townley, S.; Carslake, D.; Hodgson, D., On reducibility and ergodicity of population projection matrix models, Methods Ecol. Evol., 1, 3, 242-252 (2010)
[33] Perron, O., Zur theorie der matrices, Math. Annal., 64, 2, 248-263 (1907) · JFM 38.0202.01
[34] Frobenius, F. G., Über Matrizen aus nicht negativen Elementen (1912), Königliche Akademie der Wissenschaften · JFM 43.0204.09
[35] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (1994), SIAM · Zbl 0815.15016
[36] Morris, W.; Doak, D., Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis (2002), Sinauer Associates
[37] Rose, K. E.; Louda, S. M.; Rees, M., Demographic and evolutionary impacts of native and invasive insect herbivores on cirsium canescens, Ecology, 86, 2, 453-465 (2005)
[38] Townley, S.; Rebarber, R.; Tenhumberg, B., Feedback control systems analysis of density dependent population dynamics, Syst. Contr. Lett., 61, 2, 309-315 (2012) · Zbl 1238.93036
[39] Crosby, A. W., Ecological Imperialism: The Biological Expansion of Europe, 900-1900 (1986), Cambridge University Press
[40] Berman, A.; Neumann, M.; Stern, R. J., Nonnegative Matrices in Dynamic Systems (1989), John Wiley & Sons Inc. · Zbl 0723.93013
[41] Haddad, W. M.; Chellaboina, V.; Hui, Q., Nonnegative and Compartmental Dynamical Systems (2010), Princeton University Press · Zbl 1184.93001
[42] Smith, H. L., Monotone Dynamical Systems (1995), American Mathematical Society · Zbl 0821.34003
[43] Fisher, R. A., The Genetical Theory of Natural Selection (1958), Oxford University Press · JFM 56.1106.13
[44] Goodman, L. A., An elementary approach to the population projection-matrix, to the population reproductive value, and to related topics in the mathematical theory of population growth, Demography, 5, 1, 382-409 (1968)
[45] Leslie, P., On the use of matrices in certain population mathematics, Biometrika, 33, 3, 183-212 (1945) · Zbl 0060.31803
[46] Lande, R., Risks of population extinction from demographic and environmental stochasticity and random catastrophes, Am. Nat., 911-927 (1993)
[47] Liebhold, A.; Bascompte, J., The allee effect, stochastic dynamics and the eradication of alien species, Ecol. Lett., 6, 2, 133-140 (2003)
[48] McKane, A. J.; Newman, T. J., Predator-prey cycles from resonant amplification of demographic stochasticity, Phys. Rev. Lett., 94, 21, 218102 (2005)
[49] Black, A. J.; McKane, A. J., Stochastic formulation of ecological models and their applications, Trends Ecol. Evol., 27, 6, 337-345 (2012)
[50] Trefethen, L.; Trefethen, A.; Reddy, S.; Driscoll, T., Hydrodynamic stability without eigenvalues, Science, 261, 5121, 578 (1993) · Zbl 1226.76013
[51] Trefethen, L.; Embree, M., Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (2005), Princeton University Press · Zbl 1085.15009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.