zbMATH — the first resource for mathematics

Efficient inner product encryption with simulation-based security. (English) Zbl 07222817
Qing, Sihan (ed.) et al., Information and communications security. 19th international conference, ICICS 2017, Beijing, China, December 6–8, 2017. Proceedings. Cham: Springer (ISBN 978-3-319-89499-7/pbk; 978-3-319-89500-0/ebook). Lecture Notes in Computer Science 10631, 162-171 (2018).
Summary: An inner product encryption (IPE) scheme is a special type of functional encryption where the decryption algorithm, given a ciphertext related to a vector \(\mathbf x\) and a secret key to a vector \(\mathbf y\), computes the inner product \(\langle\mathbf x, \mathbf y\rangle \). A function-hiding IPE scheme requires that the secret key reveals no unnecessary information on the vector \(\mathbf y\) besides the privacy of the vector \(\mathbf x\). In this paper, we construct a function-hiding IPE scheme using the asymmetric bilinear pairing group setting of prime order. Compared with the existing similar schemes, our construction both reduces necessary storage complexity and computational complexity by a factor 2 or more and achieves simulation-based security, which is much stronger than indistinguishability-based security, under the External Decisional Linear assumption in the standard model.
For the entire collection see [Zbl 1435.68039].
94A60 Cryptography
Full Text: DOI
[1] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500-518. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_28 · Zbl 1311.94065
[2] Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333-362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12 · Zbl 1372.94408
[3] Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470-491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_20 · Zbl 1396.94061
[4] Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461-478. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_26 · Zbl 1311.94071
[5] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253-273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16 · Zbl 1295.94027
[6] Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306-324. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_12 · Zbl 1334.94065
[7] Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164-195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7 · Zbl 1388.94046
[8] De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519-535. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_29 · Zbl 1311.94077
[9] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555-564 (2013) · Zbl 1293.68108
[10] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162-179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11 · Zbl 1296.94119
[11] Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Report 2016/440 (2016) · Zbl 06957572
[12] Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191-208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11 · Zbl 1280.94086
[13] Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57-74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_4 · Zbl 1186.94464
[14] Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214-231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_13 · Zbl 1267.94089
[15] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010)
[16] Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457-473. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_27 · Zbl 1213.94133
[17] Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408-425. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_24 · Zbl 1397.68064
[18] Zhao, Q.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.