×

zbMATH — the first resource for mathematics

Ergodicity of 3D Leray-\(\alpha\) model with fractional dissipation and degenerate stochastic forcing. (English) Zbl 1447.60108

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
37A25 Ergodicity, mixing, rates of mixing
35R11 Fractional partial differential equations
35Q30 Navier-Stokes equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ali, H., On a critical Leray-\(\alpha\) model of turbulence, Nonlinear Anal. Real World Appl., 14, 1563-1584, (2013) · Zbl 1261.35098
[2] Arnaudon, M.; Thalmaier, A.; Wang, F.-Y., Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stochastic Process. Appl., 119, 3653-3670, (2009) · Zbl 1178.58013
[3] J. Bao, F.-Y. Wang and C. Yuan, Asymptotic log-Harnack inequality and applications for stochastic systems of infinite memory, preprint (2017), arXiv:1710.01042v2.
[4] Barbato, D.; Bessaih, H.; Ferrario, B., On a stochastic Leray-\(\alpha\) model of Euler equations, Stochastic Process. Appl., 124, 199-219, (2014) · Zbl 1284.35327
[5] Barbato, D.; Morandin, F.; Romito, M., Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system, Anal. PDE, 7, 2009-2027, (2014) · Zbl 1309.76053
[6] Bessaih, H.; Ferrario, B., The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion, J. Differential Equations, 262, 1822-1849, (2017) · Zbl 1354.35087
[7] Bessaih, H.; Hausenblas, E.; Razafimandimby, P. A., Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type, Nonlinear Differential Equations Appl., 22, 1661-1697, (2015) · Zbl 1326.60089
[8] Bessaih, H.; Razafimandimby, P. A., On the rate of convergence of the 2-D stochastic Leray-\(\alpha\) model to the 2-D stochastic Navier-Stokes equations with multiplicative noise, Appl. Math. Optim., 74, 1-25, (2016) · Zbl 1346.60093
[9] Chepyzhov, V. V.; Titi, E. S.; Vishik, M. I., On the convergence of solutions of the Leray-\(\alpha\) model to the trajectory attractor of the 3D Navier-Stokes system, Discrete Contin. Dyn. Syst., 17, 481-500, (2007) · Zbl 1146.35071
[10] Cheskidov, A.; Holm, D. D.; Olson, E.; Titi, E. S., On a Leray-\(\alpha\) model of turbulence, Proc. Roy. Soc. A, 461, 629-649, (2005) · Zbl 1145.76386
[11] Chueshov, I.; Kuksin, S., Stochastic 3D Navier-Stokes equations in a thin domain and its \(\alpha\)-approximation, Phys. D, 237, 1352-1367, (2008) · Zbl 1143.76422
[12] Chueshov, I.; Millet, A., Stochastic 2D hydrodynamical type systems: Well posedness and large deviations, Appl. Math. Optim., 61, 379-420, (2010) · Zbl 1196.49019
[13] Constantin, P.; Glatt-Holtz, N.; Vicol, V., Unique ergodicity for fractionally dissipated stochastically forced 2D Euler equations, Commun. Math. Phys., 330, 819-857, (2014) · Zbl 1294.35078
[14] Da Prato, G.; Röckner, M.; Wang, F.-Y., Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups, J. Funct. Anal., 257, 992-1017, (2009) · Zbl 1193.47047
[15] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, (1992), Cambridge Univ. Press
[16] Debbi, L., Well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on the torus and on bounded domains, J. Math. Fluid Mech., 18, 25-69, (2016) · Zbl 1335.60108
[17] Deugoué, G.; Sango, M., On the strong solution for the 3D stochastic Leray-Alpha model, Boundary Value Problems, 1-32, (2010)
[18] Weinan, E.; Mattingly, J. C., Ergodicity for the Navier-Stokes equation with degenerate random forcing: Finite-dimensional approximation, Comm. Pure Appl. Math., 54, 1386-1402, (2001) · Zbl 1024.76012
[19] Weinan, E.; Mattingly, J. C.; Sinai, Y., Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys., 224, 83-106, (2001) · Zbl 0994.60065
[20] Fernando, P. W.; Hausenblas, E.; Razafimandimby, P. A., Irreducibility and exponential mixing of some stochastic hydrodynamical systems driven by pure jump noise, Comm. Math. Phys., 348, 535-565, (2016) · Zbl 1354.60067
[21] Ferrario, B., Characterization of the law for 3D stochastic hyperviscous fluids, Electron. J. Probab., 21, 1-22, (2016) · Zbl 1336.76028
[22] Földes, J.; Glatt-Holtz, N.; Richards, G.; Thomann, E., Ergodic and mixing properties of the Boussinesq equations with a degenerate random forcing, J. Funct. Anal., 269, 2427-2504, (2015) · Zbl 1354.37056
[23] Hairer, M.; Mattingly, J. C., Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164, 993-1032, (2006) · Zbl 1130.37038
[24] Hairer, M.; Mattingly, J. C., A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab., 16, 658-738, (2011) · Zbl 1228.60072
[25] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, (French), Acta Math., 63, 193-248, (1934) · JFM 60.0726.05
[26] S. Li, W. Liu and Y. Xie, Stochastic 3D Leray-\(\alpha\) model with fractional dissipation, preprint(2018), arXiv:1805.11939v2.
[27] Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, (1969), Dunod · Zbl 0189.40603
[28] Liu, W., Harnack inequality and applications for stochastic evolution equations with monotone drifts, J. Evol. Equ., 9, 747-770, (2009) · Zbl 1239.60058
[29] Liu, W., Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators, Nonlinear Anal., 74, 7543-7561, (2011) · Zbl 1227.35184
[30] Liu, W.; Röckner, M., Local and global well-posedness of SPDE with generalized coercivity conditions, J. Differential Equations, 254, 725-755, (2013) · Zbl 1264.60046
[31] Liu, W.; Röckner, M., Stochastic Partial Differential Equations: An Introduction, (2015), Springer · Zbl 1361.60002
[32] Liu, W.; Wang, F.-Y., Harnack inequality and strong Feller property for stochastic fast diffusion equations, J. Math. Anal. Appl., 342, 651-662, (2008) · Zbl 1151.60032
[33] Olson, E.; Titi, E. S., Viscosity versus vorticity stretching: Global well-posedness for a family of Navier-Stokes-alpha-like models, Nonlinear Anal., 6, 2427-2458, (2007) · Zbl 1110.76011
[34] Pennington, N., Global solutions to the generalized Leray-alpha equation with mixed dissipation terms, Nonlinear Anal., 136, 102-116, (2016) · Zbl 1334.76035
[35] Röckner, M.; Wang, F.-Y., Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequences, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13, 27-37, (2010) · Zbl 1207.60053
[36] Röckner, M.; Zhang, X., Stochastic tamed 3D Navier-Stokes equations: Existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145, 211-267, (2009) · Zbl 1196.60118
[37] Röckner, M.; Zhu, R.-C.; Zhu, X.-C., Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise, Stochastic Process. Appl., 124, 1974-2002, (2014) · Zbl 1329.60220
[38] Wang, F.-Y., Harnack Inequalities for Stochastic Partial Differential Equations, (2013), Springer · Zbl 1332.60006
[39] Wang, F.-Y.; Wu, J.-L.; Xu, L., Log-Harnack inequality for stochastic Burgers equations and applications, J. Math. Anal. Appl., 384, 151-159, (2011) · Zbl 1227.60079
[40] Wang, F.-Y.; Xu, L., Derivative formula and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 19, (2012) · Zbl 1264.60047
[41] Wang, F.-Y.; Zhang, T. S., Log-Harnack inequality for mild solutions of SPDEs with multiplicative noise, Stochastic Process. Appl., 124, 1261-1274, (2014) · Zbl 1285.60065
[42] Xu, L., A modified log-Harnack inequality and asymptotically strong Feller property, J. Evol. Equ., 11, 925-942, (2011) · Zbl 1270.60085
[43] Yamazaki, K., On the global regularity of generalized Leray-alpha type models, Nonlinear Anal., 75, 503-515, (2012) · Zbl 1233.35064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.