zbMATH — the first resource for mathematics

Mixed-type solitons and soliton interaction for the (\(2 + 1\))-dimensional two-component long wave-short wave resonance interaction equations in a two-layer fluid through the Bell polynomials. (English) Zbl 1331.35075
Summary: In this work, we investigate the (\(2 + 1\))-dimensional two-component long wave-short wave resonance interaction equations in a two-layer fluid. Through the Bell polynomials, bilinear forms and mixed-type soliton solutions are derived. Such soliton phenomena as the V-type solitons, two parallel solitons with the periodic interaction, breather-type solitons and semi-breather-type solitons are observed, and the relevant parameter conditions are presented.
35C08 Soliton solutions
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI
[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering, (1991), Cambridge Univ. Press New York · Zbl 0762.35001
[2] Wang, Q. M.; Gao, Y. T.; Su, C. Q.; Shen, Y. J.; Feng, Y. J.; Xue, L.; Wang, Q. M.; Gao, Y. T.; Su, C. Q.; Zuo, D. W.; Sun, Z. Y.; Gao, Y. T.; Yu, X.; Liu, Y., Z. Naturforsch. A, Phys. Scr., Phys. Lett. A, 377, 3283, (2013)
[3] Belashov, V. Yu.; Vladimirov, S. V., Solitary waves in dispersive complex media, (2005), Springer-Verlag Berlin · Zbl 1087.76002
[4] Agrawal, G. P., Nonlinear fiber optics, (1995), Academic Press San Diego
[5] Zuo, D. W.; Gao, Y. T.; Xue, L.; Sun, Y. H.; Feng, Y. J.; Feng, Y. J.; Gao, Y. T.; Sun, Z. Y.; Zuo, D. W.; Shen, Y. J.; Sun, Y. H.; Xue, L.; Yu, X., Phys. Scr., Phys. Scr., 90, (2015)
[6] Zuo, D. W.; Gao, Y. T.; Xue, L.; Feng, Y. J.; Sun, Y. H.; Jin, P.; Bouman, C. A.; Sauer, K. D., Appl. Math. Lett., IEEE Trans. Comput. Imaging,, 40, 78, (2015), in press
[7] Rogers, C.; Shadwick, W. F., Bäcklund transformations and their applications, (1982), Academic New York · Zbl 0492.58002
[8] Matveev, V. B.; Salle, M. A., Darboux transformations and solitons, (1991), Springer Berlin · Zbl 0744.35045
[9] Hirota, R., The direct method in soliton theory, (1980), Springer Berlin
[10] Ma, W. X.; Huang, T. W.; Zhang, Y., Phys. Scr., 82, (2010)
[11] Ma, W. X.; Lee, J. H., Chaos Solitons Fractals, 42, 1356, (2009)
[12] Gilson, C.; Lambert, F.; Nimmo, J.; Willox, R., Proc. R. Soc. Lond. Ser. A, 452, 223, (1996)
[13] Lambert, F.; Springael, J., Chaos Solitons Fractals, 12, 2821, (2001)
[14] Ohta, Y.; Maruno, K.; Oikawa, M., J. Phys. A, 40, 7659, (2007) · Zbl 1117.35076
[15] Maruno, K.; Ohta, Y.; Oikawa, M., Glasg. Math. J., 51, 129, (2009)
[16] Radha, R.; Kumar, C. S.; Lakshmanan, M.; Gilson, C. R., J. Phys. A, 42, (2009) · Zbl 1163.35037
[17] Kanna, T.; Vijayajayanthi, M.; Sakkaravarthi, K.; Lakshmanan, M., J. Phys. A, 42, (2009) · Zbl 1188.37071
[18] Vijayajayanthi, M.; Kanna, T.; Lakshmanan, M., Eur. Phys. J. Spec. Top., 173, 57, (2009)
[19] Kanna, T.; Lakshmanan, M.; Vijayajayanthi, M., Phys. Rev. E, 90, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.