×

Partially coherent dark hollow beams propagating through real ABCD optical systems in a turbulent atmosphere. (English) Zbl 1195.78004

Summary: A closed-form analytical expression is derived for a partially coherent dark hollow beam (DHB) propagating through an arbitrary real ABCD optical system in a turbulent atmosphere. The average intensity of the beam in the output plane is investigated in the presence of, respectively, a thin lens image system and a two-lens system along the optical path. For a special thin lens image system, the partially coherent DHB and the fully coherent DHB have the same evolution properties, and the comparative analysis is made between the propagation of the focused DHB and the collimated DHB for direct propagation in turbulence to show the effect of the thin lens on the average intensity. As for the two-lens system, the effects of the lens systems, the structure constant in the turbulent medium and the parameters of the incident beam on the average intensity are evaluated and illustrated. The result shows that different lens systems and propagation parameters can evidently affect the evolution properties of the beam.

MSC:

78A10 Physical optics
86A10 Meteorology and atmospheric physics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yin J, Progress in Optics 44 pp 119– (2003)
[2] DOI: 10.1364/JOSAA.8.000932 · doi:10.1364/JOSAA.8.000932
[3] DOI: 10.1364/OL.18.000767 · doi:10.1364/OL.18.000767
[4] DOI: 10.1016/0030-4018(95)00637-0 · doi:10.1016/0030-4018(95)00637-0
[5] DOI: 10.1016/S0030-4018(97)00079-5 · doi:10.1016/S0030-4018(97)00079-5
[6] DOI: 10.1364/OE.17.017344 · doi:10.1364/OE.17.017344
[7] DOI: 10.1109/MCOM.2003.1186545 · doi:10.1109/MCOM.2003.1186545
[8] DOI: 10.1109/MWC.2003.1196402 · doi:10.1109/MWC.2003.1196402
[9] DOI: 10.1016/j.physleta.2005.04.081 · Zbl 05277768 · doi:10.1016/j.physleta.2005.04.081
[10] DOI: 10.1364/AO.44.007187 · doi:10.1364/AO.44.007187
[11] DOI: 10.1364/JOSAA.22.000672 · doi:10.1364/JOSAA.22.000672
[12] DOI: 10.1364/OE.14.001353 · doi:10.1364/OE.14.001353
[13] DOI: 10.1016/j.physleta.2006.04.022 · Zbl 05358602 · doi:10.1016/j.physleta.2006.04.022
[14] DOI: 10.1016/j.optcom.2006.03.070 · doi:10.1016/j.optcom.2006.03.070
[15] DOI: 10.1364/JOSAA.23.001410 · doi:10.1364/JOSAA.23.001410
[16] DOI: 10.1364/OE.16.015834 · doi:10.1364/OE.16.015834
[17] DOI: 10.1007/s00340-008-3339-1 · doi:10.1007/s00340-008-3339-1
[18] DOI: 10.1016/j.physleta.2007.04.065 · doi:10.1016/j.physleta.2007.04.065
[19] DOI: 10.1016/j.optlastec.2007.02.007 · doi:10.1016/j.optlastec.2007.02.007
[20] DOI: 10.1364/OL.33.001389 · doi:10.1364/OL.33.001389
[21] DOI: 10.1364/OE.15.017613 · doi:10.1364/OE.15.017613
[22] DOI: 10.1364/OE.17.010529 · doi:10.1364/OE.17.010529
[23] DOI: 10.1364/JOSAA.4.001931 · doi:10.1364/JOSAA.4.001931
[24] DOI: 10.1364/JOSAA.6.000564 · doi:10.1364/JOSAA.6.000564
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.