×

zbMATH — the first resource for mathematics

Almost automorphic solutions of second order evolution equations. (English) Zbl 1085.34045
Summary: This article is concerned with the existence of almost automorphic mild solutions to second-order evolution equations of the form \[ \ddot u(t)= Au(t)+ f(t),\tag{\(*\)} \] where \(A\) generates a strongly continuous semigroup and \(f\) is an almost automorphic function. Using the notion of uniform spectrum of a function and the method of sums of commuting operators in previous works for the case of bounded uniformly continuous solutions, we obtain sufficient conditions for the existence of almost automorphic mild solutions to \((*)\) in terms of spectrum of \(A\) and uniform spectrum of \(f\). Moreover, we study the nonlinear perturbation of this equation and obtain an extension of results by T. Diagana, the second author [Far East J. Math. Sci. (FJMS) 8, 313–322 (2003; Zbl 1040.34068)] and T. Diagana, the second and the third author [Proc. Am. Math. Soc. 132, 3289–3298 (2004; Zbl 1053.34050)].

MSC:
34G10 Linear differential equations in abstract spaces
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1006/jdeq.1997.3266 · Zbl 0879.34046 · doi:10.1006/jdeq.1997.3266
[2] DOI: 10.1093/qmath/45.2.133 · Zbl 0826.47013 · doi:10.1093/qmath/45.2.133
[3] Arendt W, Vector-valued Laplace Transforms and Cauchy Problems 96 (2001) · Zbl 0978.34001
[4] DOI: 10.1006/jdeq.1998.3610 · Zbl 0934.34049 · doi:10.1006/jdeq.1998.3610
[5] Davies EB, One-parameter Semigroups (1980)
[6] Diagana T, Far East Journal of Mathematical Sciences 8 pp 313– (2003)
[7] DOI: 10.1090/S0002-9939-04-07571-9 · Zbl 1053.34050 · doi:10.1090/S0002-9939-04-07571-9
[8] Engel KJ, One-parameter Semigroups for Linear Evolution Equations (1999)
[9] Goldstein JA, Semigroups of Linear Operators and Applications (1985)
[10] DOI: 10.1090/S0002-9939-05-07790-7 · Zbl 1073.34073 · doi:10.1090/S0002-9939-05-07790-7
[11] Hino Y Murakami S Almost automorphic solutions for abstract functional differential equations (Preprint) · Zbl 1046.34088
[12] Hino Y, Almost Periodic Solutions of Differential Equations in Banach Spaces (2002) · Zbl 1026.34001
[13] DOI: 10.1006/jdeq.1999.3757 · Zbl 0966.34049 · doi:10.1006/jdeq.1999.3757
[14] DOI: 10.1006/jdeq.1998.3531 · Zbl 0924.34038 · doi:10.1006/jdeq.1998.3531
[15] DOI: 10.4064/sm145-2-1 · Zbl 0982.34074 · doi:10.4064/sm145-2-1
[16] DOI: 10.1007/s00233-003-0021-0 · Zbl 1077.47058 · doi:10.1007/s00233-003-0021-0
[17] N’Guérékata GM, Contemporary Mathematics 252 pp 71– (1999) · doi:10.1090/conm/252/1747279
[18] DOI: 10.1515/form.2001.023 · Zbl 0974.34058 · doi:10.1515/form.2001.023
[19] N’Guérékata GM, Almost Automorphic and Almost Periodic Functions in Abstract Spaces (2001)
[20] Pazy A, Applied Mathematical Sciences 44 (1983)
[21] Prüss J, Evolutionary Integral Equations and Applications (1993)
[22] DOI: 10.1006/jdeq.1995.1149 · Zbl 0837.34067 · doi:10.1006/jdeq.1995.1149
[23] Shen W, Memoirs of the American Mathematical Society 136 (1998) · doi:10.1090/memo/0647
[24] DOI: 10.1006/jdeq.1998.3418 · Zbl 0918.34059 · doi:10.1006/jdeq.1998.3418
[25] DOI: 10.1017/S0305004199004351 · Zbl 0958.34043 · doi:10.1017/S0305004199004351
[26] Schuler E, Semigroups of Operators: Theory and ApplicationsVol. 42 (Newport Beach, CA) 1998Progr. Nonlinear Differential Equations Appl pp pp 352–363– (2000)
[27] Zaidman S, Pitman Research Notes in Mathematics Series 304 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.