×

Spatial-spectral cube matching frame for spectral CT reconstruction. (English) Zbl 1439.92115

Summary: Spectral computed tomography (CT) reconstructs the same scanned object from projections of multiple narrow energy windows, and it can be used for material identification and decomposition. However, the multi-energy projection dataset has a lower signal-noise-ratio (SNR), resulting in poor reconstructed image quality. To address this thorny problem, we develop a spectral CT reconstruction method, namely spatial-spectral cube matching frame (SSCMF). This method is inspired by the following three facts: (i) human body usually consists of two or three basic materials implying that the reconstructed spectral images have a strong sparsity; (ii) the same basic material component in a single channel image has similar intensity and structures in local regions. Different material components within the same energy channel share similar structural information; (iii) multi-energy projection datasets are collected from the subject by using different narrow energy windows, which means images reconstructed from different energy-channels share similar structures. To explore those information, we first establish a tensor cube matching frame (CMF) for a BM4D denoising procedure. Then, as a new regularizer, the CMF is introduced into a basic spectral CT reconstruction model, generating the SSCMF method. Because the SSCMF model contains an \(L_0\)-norm minimization of 4D transform coefficients, an effective strategy is employed for optimization. Both numerical simulations and realistic preclinical mouse studies are performed. The results show that the SSCMF method outperforms the state-of-the-art algorithms, including the simultaneous algebraic reconstruction technique, total variation minimization, total variation plus low rank, and tensor dictionary learning.

MSC:

92C55 Biomedical imaging and signal processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

BM3D; FSIM
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Kim, K.; Ye, J. C.; Worstell, W.; Ouyang, J.; Rakvongthai, Y.; Fakhri, G. E.; Li, Q., Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty, IEEE Trans. Med. Imaging, 34, 748-760, (2015) · doi:10.1109/TMI.2014.2380993
[2] Wu, W.; Zhang, Y.; Wang, Q.; Liu, F.; Chen, P.; Yu, H., Low-dose spectral CT reconstruction using ℓ0 image gradient and tensor dictionary, Appl. Math. Model., 63, 538-557, (2018) · doi:10.1016/j.apm.2018.07.006
[3] Johnson, T. R.; Krauss, B.; Sedlmair, M.; Grasruck, M.; Bruder, H.; Morhard, D.; Fink, C.; Weckbach, S.; Lenhard, M.; Schmidt, B., Material differentiation by dual energy CT: initial experience, Eur. Radiol., 17, 1510-1517, (2007) · doi:10.1007/s00330-006-0517-6
[4] Graser, A.; Johnson, T. R.; Bader, M.; Staehler, M.; Haseke, N.; Nikolaou, K.; Reiser, M. F.; Stief, C. G.; Becker, C. R., Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience, Invest. Radiol., 43, 112-119, (2008) · doi:10.1097/RLI.0b013e318157a144
[5] Walsh, M.; Opie, A.; Ronaldson, J.; Doesburg, R.; Nik, S.; Mohr, J.; Ballabriga, R.; Butler, A.; Butler, P., First CT using Medipix3 and the MARS-CT-3 spectral scanner, J. Instrum., 6, (2011) · doi:10.1088/1748-0221/6/01/C01095
[6] Taguchi, K.; Stierstorfer, K.; Polster, C.; Lee, O.; Kappler, S., Spatio-energetic cross-talk in photon counting detectors: N  ×  N binning and sub-pixel masking, Proc. Medical Imaging 2018: Physics of Medical Imaging, 10573, (2018) · doi:10.1117/12.2293885
[7] Xu, Q.; Yu, H.; Bennett, J.; He, P.; Zainon, R.; Doesburg, R.; Opie, A.; Walsh, M.; Shen, H.; Butler, A., Image reconstruction for hybrid true-color micro-CT, IEEE Trans. Biomed. Eng., 59, 1711-1719, (2012) · doi:10.1109/TBME.2012.2192119
[8] Chu, J.; Li, L.; Chen, Z.; Wang, G.; Gao, H., Multi-energy CT reconstruction based on low rank and sparsity with the split-bregman method (MLRSS), 2411-2414, (2012)
[9] Semerci, O.; Hao, N.; Kilmer, M. E.; Miller, E. L., Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23, 1678-1693, (2014) · Zbl 1374.94335 · doi:10.1109/TIP.2014.2305840
[10] Zhao, B.; Gao, H.; Ding, H.; Molloi, S., Tight-frame based iterative image reconstruction for spectral breast CT, Med. Phys., 40, (2013) · doi:10.1118/1.4790468
[11] Rigie, D. S.; Rivière, P. J L., Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization, Phys. Med. Biol., 60, 1741-1762, (2015) · doi:10.1088/0031-9155/60/5/1741
[12] Zeng, D.; Gao, Y.; Huang, J.; Bian, Z.; Zhang, H.; Lu, L.; Ma, J., Penalized weighted least-squares approach for multienergy computed tomography image reconstruction via structure tensor total variation regularization, Comput. Med. Imaging Graph., 53, 19-29, (2016) · doi:10.1016/j.compmedimag.2016.07.002
[13] Zhao, B.; Ding, H.; Lu, Y.; Wang, G.; Zhao, J.; Molloi, S., Dual-dictionary learning-based iterative image reconstruction for spectral computed tomography application, Phys. Med. Biol., 57, 8217, (2012) · doi:10.1088/0031-9155/57/24/8217
[14] Zhang, Y.; Mou, X.; Wang, G.; Yu, H., Tensor-based dictionary learning for spectral CT reconstruction, IEEE Trans. Med. Imaging, 36, 142-154, (2017) · doi:10.1109/TMI.2016.2600249
[15] Yu, Z.; Leng, S.; Li, Z.; McCollough, C. H., Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography, Phys. Med. Biol., 61, 6707, (2016) · doi:10.1088/0031-9155/61/18/6707
[16] Zhang, Y.; Xi, Y.; Yang, Q.; Cong, W.; Zhou, J.; Wang, G., Spectral CT reconstruction with image sparsity and spectral mean, IEEE Trans. Comput. Imaging, 2, 510-523, (2016) · doi:10.1109/TCI.2016.2609414
[17] Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. O., Image restoration by sparse 3D transform-domain collaborative filtering, Proc. Image Processing: Algorithms and Systems VI, 6812, (2008) · doi:10.1117/12.766355
[18] Danielyan, A.; Katkovnik, V.; Egiazarian, K., BM3D frames and variational image deblurring, IEEE Trans. Image Process., 21, 1715-1728, (2012) · Zbl 1373.94096 · doi:10.1109/TIP.2011.2176954
[19] Li, X., Image recovery via hybrid sparse representations: a deterministic annealing approach, IEEE J. Sel. Top. Signal Process., 5, 953-962, (2011) · doi:10.1109/JSTSP.2011.2138676
[20] Crandall, R.; Bilgin, A., Lossless image compression using causal block matching and 3D collaborative filtering, 5636-5640, (2014) · doi:10.1109/ICIP.2014.7026140
[21] Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A., Nonlocal transform-domain filter for volumetric data denoising and reconstruction, IEEE Trans. Image Process., 22, 119-133, (2013) · Zbl 1373.94273 · doi:10.1109/TIP.2012.2210725
[22] Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z.; Gu, S.; Zuo, W.; Zhang, L., Multispectral images denoising by intrinsic tensor sparsity regularization, 1692-1700, (2016) · doi:10.1109/CVPR.2016.187
[23] Chang, Y.; Yan, L.; Zhong, S., Hyperspectral image denoising via spectral and spatial low-rank approximation, 4193-4196, (2017)
[24] Niu, S.; Yu, G.; Ma, J.; Wang, J., Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction, Inverse Problems, 34, (2018) · Zbl 1427.94024 · doi:10.1088/1361-6420/aa942c
[25] Gao, H.; Yu, H.; Osher, S.; Wang, G., Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM), Inverse Problems, 27, (2011) · Zbl 1230.92024 · doi:10.1088/0266-5611/27/11/115012
[26] Wen, Y-W; Ng, M. K.; Ching, W-K, Iterative algorithms based on decoupling of deblurring and denoising for image restoration, SIAM J. Sci. Comput., 30, 2655-2674, (2008) · Zbl 1172.94333 · doi:10.1137/070683374
[27] Andersen, A. H.; Kak, A. C., Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm, Ultrason. Imaging, 6, 81-94, (1984) · doi:10.1177/016173468400600107
[28] Sidky, E. Y.; Pan, X., Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Phys. Med. Biol., 53, 4777, (2008) · doi:10.1088/0031-9155/53/17/021
[29] Chen, Z.; Jin, X.; Li, L.; Wang, G., A limited-angle CT reconstruction method based on anisotropic TV minimization, Phys. Med. Biol., 58, 2119, (2013) · doi:10.1088/0031-9155/58/7/2119
[30] Dong, B.; Li, J.; Shen, Z., X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting, J. Sci. Comput., 54, 333-349, (2013) · Zbl 1308.94015 · doi:10.1007/s10915-012-9579-6
[31] Yu, W.; Wang, C.; Huang, M., Edge-preserving reconstruction from sparse projections of limited-angle computed tomography using _{0}-regularized gradient prior, Rev. Sci. Instrum., 88, (2017) · doi:10.1063/1.4981132
[32] Cai, J-F; Jia, X.; Gao, H.; Jiang, S. B.; Shen, Z.; Zhao, H., Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-principle study, IEEE Trans. Med. Imaging, 33, 1581-1591, (2014) · doi:10.1109/TMI.2014.2319055
[33] Wu, W.; Yu, H.; Gong, C.; Liu, F., Swinging multi-source industrial CT systems for aperiodic dynamic imaging, Opt. Express, 25, 24215-24235, (2017) · doi:10.1364/OE.25.024215
[34] Goldstein, T.; Osher, S., The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 323-343, (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[35] Setzer, S., Operator splittings, Bregman methods and frame shrinkage in image processing, Int. J. Comput. Vis., 92, 265-280, (2011) · Zbl 1235.68314 · doi:10.1007/s11263-010-0357-3
[36] Chandler, D. M.; Hemami, S. S., VSNR: a wavelet-based visual signal-to-noise ratio for natural images, IEEE Trans. Image Process., 16, 2284-2298, (2007) · doi:10.1109/TIP.2007.901820
[37] Zhang, L.; Zhang, L.; Mou, X.; Zhang, D., FSIM: a feature similarity index for image quality assessment, IEEE Trans. Image Process., 20, 2378-2386, (2011) · Zbl 1373.62333 · doi:10.1109/TIP.2011.2109730
[38] Wang, Z.; Simoncelli, E. P.; Bovik, A. C., Multiscale structural similarity for image quality assessment, (2003)
[39] Ducros, N.; Abascal, J. F P. J.; Sixou, B.; Rit, S.; Peyrin, F., Regularization of nonlinear decomposition of spectral x-ray projection images, Med. Phys., 44, e174-e187, (2017) · doi:10.1002/mp.12283
[40] Liu, J.; Gao, H., Material reconstruction for spectral computed tomography with detector response function, Inverse Problems, 32, (2016) · Zbl 1354.92044 · doi:10.1088/0266-5611/32/11/114001
[41] Wang, Q.; Zhu, Y.; Yu, H., Locally linear constraint based optimization model for material decomposition, Phys. Med. Biol., 62, 8314, (2017) · doi:10.1088/1361-6560/aa8e13
[42] Granton, P.; Pollmann, S.; Ford, N.; Drangova, M.; Holdsworth, D., Implementation of dual-and triple-energy cone-beam micro-CT for postreconstruction material decomposition, Med. Phys., 35, 5030-5042, (2008) · doi:10.1118/1.2987668
[43] Zhang, H.; Berg, A. C.; Maire, M.; Malik, J., SVM-KNN: discriminative nearest neighbor classification for visual category recognition, (2006)
[44] Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K., BM3D image denoising with shape-adaptive principal component analysis, SPARS’09-Signal Processing with Adaptive Sparse Structured Representations (April, 2009), (2009)
[45] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1-122, (2011) · Zbl 1229.90122 · doi:10.1561/2200000016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.