×

Directions for model building from asymptotic safety. (English) Zbl 1381.81074

Summary: Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of \(\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L}\). Possible signatures at colliders are worked out and include \(R\)-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81V05 Strong interaction, including quantum chromodynamics
81T17 Renormalization group methods applied to problems in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett.30 (1973) 1343 [INSPIRE]. · doi:10.1103/PhysRevLett.30.1343
[2] H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett.30 (1973) 1346 [INSPIRE]. · doi:10.1103/PhysRevLett.30.1346
[3] S.R. Coleman and D.J. Gross, Price of asymptotic freedom, Phys. Rev. Lett.31 (1973) 851 [INSPIRE]. · doi:10.1103/PhysRevLett.31.851
[4] N.-P. Chang, Eigenvalue conditions and asymptotic freedom for Higgs scalar gauge theories, Phys. Rev.D 10 (1974) 2706 [INSPIRE].
[5] G.F. Giudice, G. Isidori, A. Salvio and A. Strumia, Softened gravity and the extension of the standard model up to infinite energy, JHEP02 (2015) 137 [arXiv:1412.2769] [INSPIRE]. · doi:10.1007/JHEP02(2015)137
[6] B. Holdom, J. Ren and C. Zhang, Stable Asymptotically Free Extensions (SAFEs) of the standard model, JHEP03 (2015) 028 [arXiv:1412.5540] [INSPIRE]. · doi:10.1007/JHEP03(2015)028
[7] G.M. Pelaggi, A. Strumia and S. Vignali, Totally asymptotically free trinification, JHEP08 (2015) 130 [arXiv:1507.06848] [INSPIRE]. · doi:10.1007/JHEP08(2015)130
[8] K.G. Wilson, Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture, Phys. Rev.B 4 (1971) 3174 [INSPIRE]. · Zbl 1236.82017
[9] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1080), pp. 790-831 [INSPIRE].
[10] D.F. Litim, Renormalisation group and the Planck scale, Phil. Trans. Roy. Soc. Lond.A 369 (2011) 2759 [arXiv:1102.4624] [INSPIRE]. · Zbl 1228.82028 · doi:10.1098/rsta.2011.0103
[11] A.D. Bond and D.F. Litim, Theorems for asymptotic safety of gauge theories, Eur. Phys. J.C 77 (2017) 429 [arXiv:1608.00519] [INSPIRE]. · doi:10.1140/epjc/s10052-017-4976-5
[12] D.F. Litim and F. Sannino, Asymptotic safety guaranteed, JHEP12 (2014) 178 [arXiv:1406.2337] [INSPIRE]. · doi:10.1007/JHEP12(2014)178
[13] D.F. Litim, M. Mojaza and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, JHEP01 (2016) 081 [arXiv:1501.03061] [INSPIRE]. · Zbl 1388.81343 · doi:10.1007/JHEP01(2016)081
[14] W.E. Caswell, Asymptotic behavior of non-Abelian gauge theories to two-loop order, Phys. Rev. Lett.33 (1974) 244 [INSPIRE]. · doi:10.1103/PhysRevLett.33.244
[15] T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys.B 196 (1982) 189 [INSPIRE]. · doi:10.1016/0550-3213(82)90035-9
[16] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].
[17] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev.D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].
[18] M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory. I. Wave function renormalization, Nucl. Phys.B 222 (1983) 83 [INSPIRE].
[19] M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory. II. Yukawa couplings, Nucl. Phys.B 236 (1984) 221 [INSPIRE].
[20] M.E. Machacek and M.T. Vaughn, Two-loop renormalization group equations in a general quantum field theory. III. Scalar quartic couplings, Nucl. Phys.B 249 (1985) 70 [INSPIRE].
[21] M.-x. Luo, H.-w. Wang and Y. Xiao, Two-loop renormalization group equations in general gauge field theories, Phys. Rev.D 67 (2003) 065019 [hep-ph/0211440] [INSPIRE].
[22] Particle Data Group, C. Patrignani et al., Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
[23] V. Shiltsev, On the future high energy colliders, in Proceedings of the Meeting of the APS Division of Particles and Fields (DPF 2015), Ann Arbor U.S.A., 4-8 Aug 2015 [arXiv:1509.08369] [INSPIRE].
[24] TLEP Design Study Working Group, M. Bicer et al., First look at the physics case of TLEP, JHEP01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
[25] D. d’Enterria, Physics at the FCC-ee, in Proceedings of the 17th Lomonosov Conference on Elementary Particle Physics, Moscow Russia, 20-26 Aug 2015 [arXiv:1602.05043] [INSPIRE].
[26] CMS collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV, Eur. Phys. J.C 75 (2015) 288 [arXiv:1410.6765] [INSPIRE].
[27] CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \[\sqrt{s}=7 \sqrt{s}=7\] TeV with the CMS detector, Phys. Rev.D 87 (2013) 112002 [Erratum ibid.D 87 (2013) 119902] [arXiv:1212.6660] [INSPIRE].
[28] CMS collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, Eur. Phys. J.C 75 (2015) 186 [arXiv:1412.1633] [INSPIRE].
[29] DELPHI, OPAL, LEP Electroweak, ALEPH and L3 collaborations, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept.532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
[30] ATLAS and CMS collaborations, P. Azzurri, Results from CMS and ATLAS: electroweak symmetry, breaking and beyond, PoS(BORMIO2016)044 [INSPIRE].
[31] D.S.M. Alves, J. Galloway, J.T. Ruderman and J.R. Walsh, Running electroweak couplings as a probe of new physics, JHEP02 (2015) 007 [arXiv:1410.6810] [INSPIRE]. · doi:10.1007/JHEP02(2015)007
[32] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
[33] G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev.D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
[34] M. Farina et al., Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett.B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE]. · doi:10.1016/j.physletb.2017.06.043
[35] CMS collaboration, Search for long-lived charged particles in proton-proton collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV, Phys. Rev.D 94 (2016) 112004 [arXiv:1609.08382] [INSPIRE].
[36] ATLAS collaboration, Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb−1of proton-proton collision data at \[\sqrt{s}=13 \sqrt{s}=13\] TeV, Phys. Lett.B 760 (2016) 647 [arXiv:1606.05129] [INSPIRE].
[37] CMS collaboration, Search for heavy stable charged particles with 12.9 fb−1of 2016 data, CMS-PAS-EXO-16-036 (2016).
[38] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys.80 (2000) 1 [INSPIRE].
[39] A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE].
[40] ATLAS collaboration, Search for new phenomena in dijet events using 37 fb−1of pp collision data collected at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with the ATLAS detector, arXiv:1703.09127 [INSPIRE].
[41] CMS collaboration, Searches for dijet resonances in pp collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV using data collected in 2016, CMS-PAS-EXO-16-056 (2017).
[42] ATLAS collaboration, Search for light dijet resonances with the ATLAS detector using a trigger-level analysis in LHC pp collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV, ATLAS-CONF-2016-030 (2016).
[43] ATLAS collaboration, Search for new phenomena in dijet events with the ATLAS detector at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with 2015 and 2016 data, ATLAS-CONF-2016-069 (2016).
[44] CMS collaboration, Search for dijet resonances in proton-proton collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV and constraints on dark matter and other models, Phys. Lett.B 769 (2017) 520 [arXiv:1611.03568] [INSPIRE].
[45] ATLAS collaboration, Search for heavy resonances decaying to a Z boson and a photon in pp collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with the ATLAS detector, ATLAS-CONF-2016-010 (2016).
[46] CMS collaboration, Search for high-mass resonances in Zγ → e+e−γ/μ+μ−γ final states in proton-proton collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV, CMS-PAS-EXO-16-034 (2016).
[47] ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the ℓℓqq and ννqq final states in pp collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with the ATLAS detector, ATLAS-CONF-2016-082 (2016).
[48] CMS collaboration, Search for a heavy scalar boson decaying into a pair of Z bosons in the 2ℓ2ν final state, CMS-PAS-HIG-16-001 (2016).
[49] ATLAS collaboration, Search for WW/WZ resonance production in the ℓνqq final state at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with the ATLAS detector at the LHC,ATLAS-CONF-2015-075 (2015).
[50] ATLAS collaboration, Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at \[\sqrt{s}=13 \sqrt{s}=13\] TeV with the ATLAS detector, ATLAS-CONF-2016-021 (2016).
[51] ATLAS collaboration, Search for scalar diphoton resonances with 15.4 fb−1of data collected at \[\sqrt{s}=13 \sqrt{s}=13\] TeV in 2015 and 2016 with the ATLAS detector, ATLAS-CONF-2016-059 (2016).
[52] CMS collaboration, Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search, Phys. Lett.B 767 (2017) 147 [arXiv:1609.02507] [INSPIRE].
[53] M. Cvetič, J. Halverson and P. Langacker, String consistency, heavy exotics and the 750 GeV diphoton excess at the LHC, Fortschr. Phys.64 (2016) 748 [arXiv:1512.07622] [INSPIRE]. · Zbl 1349.81151 · doi:10.1002/prop.201600080
[54] A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE]. · Zbl 1369.81126 · doi:10.1140/epjc/s10052-009-1072-5
[55] Y. Kats and M.J. Strassler, Probing colored particles with photons, leptons and jets, JHEP11 (2012) 097 [Erratum ibid.07 (2016) 009] [arXiv:1204.1119] [INSPIRE]. · Zbl 1349.81151
[56] Y. Kats and M.J. Strassler, Resonances from QCD bound states and the 750 GeV diphoton excess, JHEP05 (2016) 092 [Erratum ibid.07 (2016) 044] [arXiv:1602.08819] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.